These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30388686)
21. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
22. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
23. Sorption and desorption of organophosphate esters with different hydrophobicity by soils. Cristale J; Álvarez-Martín A; Rodríguez-Cruz S; Sánchez-Martín MJ; Lacorte S Environ Sci Pollut Res Int; 2017 Dec; 24(36):27870-27878. PubMed ID: 28988335 [TBL] [Abstract][Full Text] [Related]
24. Remediation of chromium and mercury polluted calcareous soils using nanoparticles: Sorption -desorption kinetics, speciation and fractionation. Moharem M; Elkhatib E; Mesalem M Environ Res; 2019 Mar; 170():366-373. PubMed ID: 30623883 [TBL] [Abstract][Full Text] [Related]
25. Sorption and transport modeling of hexavalent chromium on soil media. Khan AA; Muthukrishnan M; Guha BK J Hazard Mater; 2010 Feb; 174(1-3):444-54. PubMed ID: 19879041 [TBL] [Abstract][Full Text] [Related]
26. Effects of tannic acid on the transport behavior of trivalent chromium in soils and its mechanism. Xu T; Jiang X; Tang Y; Zeng Y; Zhang W; Shi B Environ Pollut; 2022 Jul; 305():119328. PubMed ID: 35447257 [TBL] [Abstract][Full Text] [Related]
27. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column. Zhang X; Tong J; Hu BX; Wei W Environ Sci Pollut Res Int; 2018 Jan; 25(1):459-468. PubMed ID: 29043590 [TBL] [Abstract][Full Text] [Related]
28. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. Aşçi Y; Nurbaş M; Açikel YS J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293 [TBL] [Abstract][Full Text] [Related]
29. Selective adsorption of Cr(VI) ions from aqueous solutions using Cr Etemadi M; Samadi S; Yazd SS; Jafari P; Yousefi N; Aliabadi M Int J Biol Macromol; 2017 Feb; 95():725-733. PubMed ID: 27919817 [TBL] [Abstract][Full Text] [Related]
30. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides. Whitaker AH; Peña J; Amor M; Duckworth OW Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797 [TBL] [Abstract][Full Text] [Related]
31. Plant rhizosphere defense system respond differently to emerging polyfluoroalkyl substances F-53B and PFOS stress. Lu B; Qian J; Hu J; Huang Y; Wang P; Shen J; He Y; Tang S; Liu Y; Zhang Y J Hazard Mater; 2023 Feb; 443(Pt A):130119. PubMed ID: 36265386 [TBL] [Abstract][Full Text] [Related]
32. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Dong D; Zhao X; Hua X; Liu J; Gao M J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011 [TBL] [Abstract][Full Text] [Related]
33. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid. Zhang J; Yin H; Chen L; Liu F; Chen H Environ Pollut; 2018 Jun; 237():740-746. PubMed ID: 29126567 [TBL] [Abstract][Full Text] [Related]
34. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution. Kantar C; Demiray H; Dogan NM; Dodge CJ Chemosphere; 2011 Mar; 82(10):1489-95. PubMed ID: 21272912 [TBL] [Abstract][Full Text] [Related]
35. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. Kantar C; Cetin Z; Demiray H J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738 [TBL] [Abstract][Full Text] [Related]
36. Predicting Cr(vi) adsorption on soils: the role of the competition of soil organic matter. Shi Z; Peng S; Lin X; Liang Y; Lee SZ; Allen HE Environ Sci Process Impacts; 2020 Jan; 22(1):95-104. PubMed ID: 31897461 [TBL] [Abstract][Full Text] [Related]
37. As(V)/Cr(VI) pollution control in soils, hemp waste, and other by-products: competitive sorption trials. Quintáns-Fondo A; Ferreira-Coelho G; Paradelo-Núñez R; Nóvoa-Muñoz JC; Arias-Estévez M; Fernández-Sanjurjo MJ; Álvarez-Rodríguez E; Núñez-Delgado A Environ Sci Pollut Res Int; 2016 Oct; 23(19):19182-92. PubMed ID: 27351877 [TBL] [Abstract][Full Text] [Related]
38. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature. Singh A; Srivastava A; Srivastava PC Pest Manag Sci; 2016 Aug; 72(8):1491-9. PubMed ID: 26462999 [TBL] [Abstract][Full Text] [Related]
39. The influence of pH, co-existing ions, ionic strength, and temperature on the adsorption and reduction of hexavalent chromium by undissolved humic acid. Barnie S; Zhang J; Wang H; Yin H; Chen H Chemosphere; 2018 Dec; 212():209-218. PubMed ID: 30144682 [TBL] [Abstract][Full Text] [Related]
40. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Filipe OM; Costa CA; Vidal MM; Santos EB Chemosphere; 2013 Jan; 90(2):432-40. PubMed ID: 22951356 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]