These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 3038882)
21. Roles of nifF and nifJ gene products in electron transport to nitrogenase in Klebsiella pneumoniae. Hill S; Kavanagh EP J Bacteriol; 1980 Feb; 141(2):470-5. PubMed ID: 6988383 [TBL] [Abstract][Full Text] [Related]
22. Isolation and characterization of nitrogenase MoFe protein from the mutant strain pHK17 of Klebsiella pneumoniae in which the two bridging cysteine residues of the P-clusters are replaced by the non-coordinating amino acid alanine. Yousafzai FK; Buck M; Smith BE Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):111-8. PubMed ID: 8761459 [TBL] [Abstract][Full Text] [Related]
23. Nitrogenase. II. Changes in the EPR signal of component I (iron-molybdenum protein) of Azotobacter vinelandii nitrogenase during repression and derepression. Davis LC; Shah VK; Brill WJ; Orme-Johnson WH Biochim Biophys Acta; 1972 Feb; 256(2):512-23. PubMed ID: 4335840 [No Abstract] [Full Text] [Related]
24. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers. Zimmermann R; Münck E; Brill WJ; Shah VK; Henzl MT; Rawlings J; Orme-Johnson WH Biochim Biophys Acta; 1978 Dec; 537(2):185-207. PubMed ID: 215215 [TBL] [Abstract][Full Text] [Related]
25. Correspondence of the larger subunit of the MoFe-protein in clostridial nitrogenase to the nif D gene products of other N2-fixing organisms. Hase T; Nakano T; Matsubara H; Zumft WG J Biochem; 1981 Jul; 90(1):295-8. PubMed ID: 7026551 [TBL] [Abstract][Full Text] [Related]
26. Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. Ragsdale SW; Ljungdahl LG; DerVartanian DV J Bacteriol; 1983 Sep; 155(3):1224-37. PubMed ID: 6309745 [TBL] [Abstract][Full Text] [Related]
28. The electron transport to nitrogenase in Mycobacterium flavum. Bothe H; Yates MG Arch Microbiol; 1976 Feb; 107(1):25-31. PubMed ID: 1252086 [TBL] [Abstract][Full Text] [Related]
29. Evidence for separate enzymes of pyruvate decarboxylation and pyruvate synthesis in soluble extracts of Clostridium pasteurianum. Bush RS; Sauer FD J Biol Chem; 1977 Apr; 252(8):2657-61. PubMed ID: 856798 [TBL] [Abstract][Full Text] [Related]
30. Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Williams K; Lowe PN; Leadlay PF Biochem J; 1987 Sep; 246(2):529-36. PubMed ID: 3500709 [TBL] [Abstract][Full Text] [Related]
31. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. Hughes NJ; Clayton CL; Chalk PA; Kelly DJ J Bacteriol; 1998 Mar; 180(5):1119-28. PubMed ID: 9495749 [TBL] [Abstract][Full Text] [Related]
32. Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex. Thorneley RN; Deistung J Biochem J; 1988 Jul; 253(2):587-95. PubMed ID: 3140782 [TBL] [Abstract][Full Text] [Related]
33. Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate:flavodoxin oxidoreductase from Helicobacter pylori. Hughes NJ; Chalk PA; Clayton CL; Kelly DJ J Bacteriol; 1995 Jul; 177(14):3953-9. PubMed ID: 7608066 [TBL] [Abstract][Full Text] [Related]
34. Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. Yoon KS; Hille R; Hemann C; Tabita FR J Biol Chem; 1999 Oct; 274(42):29772-8. PubMed ID: 10514453 [TBL] [Abstract][Full Text] [Related]
35. Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga maritima, have different catalytic mechanisms. Smith ET; Blamey JM; Adams MW Biochemistry; 1994 Feb; 33(4):1008-16. PubMed ID: 8305427 [TBL] [Abstract][Full Text] [Related]
36. Pyruvate oxidation by the Reiter strain of Treponema phagedenis. George HA; Smibert RM J Bacteriol; 1982 Dec; 152(3):1060-5. PubMed ID: 7142105 [TBL] [Abstract][Full Text] [Related]
37. The effect of pyruvate on nitrogenase activity in the blue-green alga Anabaena cylindrica. Bennett KJ; Silvester WB; Brown JM Arch Microbiol; 1975 Sep; 105(1):61-6. PubMed ID: 811189 [TBL] [Abstract][Full Text] [Related]
38. Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction. Thorneley RN; Lowe DJ Biochem J; 1983 Nov; 215(2):393-403. PubMed ID: 6316927 [TBL] [Abstract][Full Text] [Related]
39. A four-iron, four-sulfide ferredoxin with high thermostability from Clostridium thermoaceticum. Yang SS; Ljungdahl LG; LeGall J J Bacteriol; 1977 Jun; 130(3):1084-90. PubMed ID: 863852 [TBL] [Abstract][Full Text] [Related]
40. Electron-paramagnetic-resonance studies on nitrogenase of Klebsiella pneumoniae. Evidence for acetylene- and ethylene-nitrogenase transient complexes. Lowe DJ; Eady RR; Thorneley NF Biochem J; 1978 Jul; 173(1):277-90. PubMed ID: 210766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]