These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30388831)
1. Influence of Oxygen Vacancy Density on the Polaronic Configuration in Rutile. Liu R; Fang L; Hao Y; Chi Y Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30388831 [TBL] [Abstract][Full Text] [Related]
2. Engineering Polarons at a Metal Oxide Surface. Yim CM; Watkins MB; Wolf MJ; Pang CL; Hermansson K; Thornton G Phys Rev Lett; 2016 Sep; 117(11):116402. PubMed ID: 27661706 [TBL] [Abstract][Full Text] [Related]
3. A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2(110) surface by GGA + U and HSE06 methods. Shibuya T; Yasuoka K; Mirbt S; Sanyal B J Phys Condens Matter; 2012 Oct; 24(43):435504. PubMed ID: 23032600 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Feasibility of Polaronic OER on (110) Surface of Rutile TiO Pada Sarker H; Abild-Pedersen F; Bajdich M Chemphyschem; 2024 Jun; 25(11):e202400060. PubMed ID: 38427793 [TBL] [Abstract][Full Text] [Related]
7. Use of site symmetry in supercell models of defective crystals: polarons in CeO Evarestov RA; Gryaznov D; Arrigoni M; Kotomin EA; Chesnokov A; Maier J Phys Chem Chem Phys; 2017 Mar; 19(12):8340-8348. PubMed ID: 28280805 [TBL] [Abstract][Full Text] [Related]
8. The origin of oxygen vacancy induced ferromagnetism in undoped TiO(2). Kim D; Hong J; Park YR; Kim KJ J Phys Condens Matter; 2009 May; 21(19):195405. PubMed ID: 21825483 [TBL] [Abstract][Full Text] [Related]
9. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110). Haubrich J; Kaxiras E; Friend CM Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119 [TBL] [Abstract][Full Text] [Related]
10. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. Chrétien S; Metiu H J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696 [TBL] [Abstract][Full Text] [Related]
11. Interplay between Adsorbates and Polarons: CO on Rutile TiO_{2}(110). Reticcioli M; Sokolović I; Schmid M; Diebold U; Setvin M; Franchini C Phys Rev Lett; 2019 Jan; 122(1):016805. PubMed ID: 31012645 [TBL] [Abstract][Full Text] [Related]
12. Electronic and thermodynamic properties of native point defects in V Ngamwongwan L; Fongkaew I; Jungthawan S; Hirunsit P; Limpijumnong S; Suthirakun S Phys Chem Chem Phys; 2021 May; 23(19):11374-11387. PubMed ID: 33711089 [TBL] [Abstract][Full Text] [Related]
13. Efficient Method for Modeling Polarons Using Electronic Structure Methods. Pham TD; Deskins NA J Chem Theory Comput; 2020 Aug; 16(8):5264-5278. PubMed ID: 32603136 [TBL] [Abstract][Full Text] [Related]
14. On the Interplay Between Oxygen Vacancies and Small Polarons in Manganese Iron Spinel Oxides. Eppstein R; Caspary Toroker M ACS Mater Au; 2022 May; 2(3):269-277. PubMed ID: 36855379 [TBL] [Abstract][Full Text] [Related]
15. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
16. On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models. Carrasco J; Lopez N; Illas F J Chem Phys; 2005 Jun; 122(22):224705. PubMed ID: 15974701 [TBL] [Abstract][Full Text] [Related]
17. Ferromagnetic Properties of N-Doped and Undoped TiO₂ Rutile Single-Crystal Wafers with Addition of Tungsten Trioxide. Xu J; Wang H; Zhou Z; Zou Z Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314264 [TBL] [Abstract][Full Text] [Related]
18. Mobile Polaronic States in α-MoO3: An ab Initio Investigation of the Role of Oxygen Vacancies and Alkali Ions. Tahini HA; Tan X; Lou SN; Scott J; Amal R; Ng YH; Smith SC ACS Appl Mater Interfaces; 2016 May; 8(17):10911-7. PubMed ID: 27066912 [TBL] [Abstract][Full Text] [Related]
19. Direct evidence for the influence of lithium ion vacancies on polaron transport in nanoscale LiFePO Banday A; Ali M; Pandey R; Murugavel S Phys Chem Chem Phys; 2019 May; 21(19):9858-9864. PubMed ID: 31032833 [TBL] [Abstract][Full Text] [Related]
20. Oxygen vacancy and hole conduction in amorphous TiO2. Pham HH; Wang LW Phys Chem Chem Phys; 2015 Jan; 17(1):541-50. PubMed ID: 25406575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]