BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30389174)

  • 1. Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: Clonal evolution and implications for minimal residual disease target selection.
    Theunissen PMJ; de Bie M; van Zessen D; de Haas V; Stubbs AP; van der Velden VHJ
    Leuk Res; 2019 Jan; 76():98-104. PubMed ID: 30389174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of clonal stability of minimal residual disease targets between 1st and 2nd relapse of childhood precursor B-cell acute lymphoblastic leukemia.
    Guggemos A; Eckert C; Szczepanski T; Hanel C; Taube T; van der Velden VH; Graf-Einsiedel H; Henze G; Seeger K
    Haematologica; 2003 Jul; 88(7):737-46. PubMed ID: 12857551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring.
    Germano G; del Giudice L; Palatron S; Giarin E; Cazzaniga G; Biondi A; Basso G
    Leukemia; 2003 Aug; 17(8):1573-82. PubMed ID: 12886245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR.
    van der Velden VH; Willemse MJ; van der Schoot CE; Hählen K; van Wering ER; van Dongen JJ
    Leukemia; 2002 May; 16(5):928-36. PubMed ID: 11986956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detailed clonality analysis of relapsing precursor B acute lymphoblastic leukemia: implications for minimal residual disease detection.
    Li AH; Rosenquist R; Forestier E; Lindh J; Roos G
    Leuk Res; 2001 Dec; 25(12):1033-45. PubMed ID: 11684274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical application of next-generation sequencing-based monitoring of minimal residual disease in childhood acute lymphoblastic leukemia.
    Mai H; Li Q; Wang G; Wang Y; Liu S; Tang X; Chen F; Zhou G; Liu Y; Li T; Wang L; Wang C; Wen F; Liu S
    J Cancer Res Clin Oncol; 2023 Jul; 149(7):3259-3266. PubMed ID: 35918464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Immunoglobulin Heavy Chain Gene Clonality by Next-Generation Sequencing for Minimal Residual Disease Monitoring in B-Lymphoblastic Leukemia.
    Shin S; Hwang IS; Kim J; Lee KA; Lee ST; Choi JR
    Ann Lab Med; 2017 Jul; 37(4):331-335. PubMed ID: 28445014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations for monitoring minimal residual disease using immunoglobulin clonality in patients with precursor B-cell lymphoblastic leukemia.
    Jo I; Chung NG; Lee S; Kwon A; Kim J; Choi H; Jang W; Kim S; Lee JW; Yoon JH; Cho B; Han K; Kim Y; Kim M
    Clin Chim Acta; 2019 Jan; 488():81-89. PubMed ID: 30389459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease.
    van der Velden VH; Szczepanski T; Wijkhuijs JM; Hart PG; Hoogeveen PG; Hop WC; van Wering ER; van Dongen JJ
    Leukemia; 2003 Sep; 17(9):1834-44. PubMed ID: 12970784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease.
    Szczepański T; Beishuizen A; Pongers-Willemse MJ; Hählen K; Van Wering ER; Wijkhuijs AJ; Tibbe GJ; De Bruijn MA; Van Dongen JJ
    Leukemia; 1999 Feb; 13(2):196-205. PubMed ID: 10025893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of immunoglobulin and T-cell receptor-δ/γ gene rearrangements in Iranian children with B-precursor acute lymphoblastic leukemia.
    Poopak B; Saki N; Purfatholah AA; Najmabadi H; Mortazavi Y; Arzanian MT; Khosravipour G; Haghnejad F; Salari F; Shahjahani M
    Hematology; 2014 Jul; 19(5):259-66. PubMed ID: 24620952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection.
    Li A; Zhou J; Zuckerman D; Rue M; Dalton V; Lyons C; Silverman LB; Sallan SE; Gribben JG
    Blood; 2003 Dec; 102(13):4520-6. PubMed ID: 12946997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying IGH disease clones for MRD monitoring in childhood B-cell acute lymphoblastic leukemia using RNA-Seq.
    Li Z; Jiang N; Lim EH; Chin WHN; Lu Y; Chiew KH; Kham SKY; Yang W; Quah TC; Lin HP; Tan AM; Ariffin H; Yang JJ; Yeoh AE
    Leukemia; 2020 Sep; 34(9):2418-2429. PubMed ID: 32099036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse.
    van der Velden VH; Brüggemann M; Hoogeveen PG; de Bie M; Hart PG; Raff T; Pfeifer H; Lüschen S; Szczepański T; van Wering ER; Kneba M; van Dongen JJ
    Leukemia; 2004 Dec; 18(12):1971-80. PubMed ID: 15470492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease.
    Szczepański T; Willemse MJ; Brinkhof B; van Wering ER; van der Burg M; van Dongen JJ
    Blood; 2002 Apr; 99(7):2315-23. PubMed ID: 11895762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of clonal immunoglobulin heavy chain and I cell receptor gamma gene rearrangements during progression of childhood acute lymphoblastic leukemia.
    Marshall GM; Kwan E; Haber M; Brisco MJ; Sykes PJ; Morley AA; Toogood I; Waters K; Tauro G; Ekert H
    Leukemia; 1995 Nov; 9(11):1847-50. PubMed ID: 7475273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia.
    Steenbergen EJ; Verhagen OJ; van Leeuwen EF; van den Berg H; Behrendt H; Slater RM; von dem Borne AE; van der Schoot CE
    Leukemia; 1995 Oct; 9(10):1726-34. PubMed ID: 7564517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined IKZF1 and IG markers as new tools for diagnosis and minimal residual disease assessment in Tunisian B-ALL.
    Besbes S; Hamadou WS; Boulland ML; Lefranc MP; Ben Youssef Y; Achour B; Khelif A; Fest T; Soua Z
    Bull Cancer; 2016 Oct; 103(10):822-828. PubMed ID: 27614734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antigen receptor sequencing of paired bone marrow samples shows homogeneous distribution of acute lymphoblastic leukemia subclones.
    Theunissen PMJ; van Zessen D; Stubbs AP; Faham M; Zwaan CM; van Dongen JJM; Van Der Velden VHJ
    Haematologica; 2017 Nov; 102(11):1869-1877. PubMed ID: 28860343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TEL-AML1 real-time quantitative polymerase chain reaction (PCR) might replace the antigen receptor-based genomic PCR in clinical minimal residual disease studies in children with acute lymphoblastic leukaemia.
    de Haas V; Breunis WB; Dee R; Verhagen OJ; Kroes W; van Wering ER; van Dongen JJ; van den Berg H; van der Schoot CE
    Br J Haematol; 2002 Jan; 116(1):87-93. PubMed ID: 11841400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.