BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30389452)

  • 1. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia.
    O'Donohoe PB; Turner PJ; Huskens N; Buckler KJ; Pandit JJ
    Respir Physiol Neurobiol; 2019 Feb; 260():17-27. PubMed ID: 30389452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kim I; Wang J; White C; Carroll JL
    Respir Physiol Neurobiol; 2015 Aug; 215():30-8. PubMed ID: 25956223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation.
    Akada S; Fagerlund MJ; Lindahl SG; Sakamoto A; Prabhakar NR; Eriksson LI
    Respir Physiol Neurobiol; 2008 Feb; 160(3):284-8. PubMed ID: 18054527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in oxygen sensitivity of TASK in carotid body glomus cells during early postnatal development.
    Kim D; Papreck JR; Kim I; Donnelly DF; Carroll JL
    Respir Physiol Neurobiol; 2011 Aug; 177(3):228-35. PubMed ID: 21530688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction.
    Jonsson MM; Lindahl SG; Eriksson LI
    Anesthesiology; 2005 Jan; 102(1):110-6. PubMed ID: 15618794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventilatory and chemoreceptor responses to hypercapnia in neonatal rats chronically exposed to moderate hyperoxia.
    Bavis RW; Li KY; DeAngelis KJ; March RJ; Wallace JA; Logan S; Putnam RW
    Respir Physiol Neurobiol; 2017 Mar; 237():22-34. PubMed ID: 28034711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca²(+) channels.
    Cayzac SH; Rocher A; Obeso A; Gonzalez C; Riccardi D; Kemp PJ
    Respir Physiol Neurobiol; 2011 Jan; 175(1):80-9. PubMed ID: 20863914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia.
    Pandit JJ; Winter V; Bayliss R; Buckler KJ
    Adv Exp Med Biol; 2010; 669():205-8. PubMed ID: 20217350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    J Neurophysiol; 2002 Aug; 88(2):604-12. PubMed ID: 12163513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of voltage-dependent K
    Wang J; Kim D
    J Physiol; 2018 Aug; 596(15):3119-3136. PubMed ID: 29160573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kang D; Martin EA; Kim I; Carroll JL
    Respir Physiol Neurobiol; 2014 May; 195():19-26. PubMed ID: 24530802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between changes of glomus cell current and neural response of rat carotid body.
    Cheng PM; Donnelly DF
    J Neurophysiol; 1995 Nov; 74(5):2077-86. PubMed ID: 8592198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-additive interactions between mitochondrial complex IV blockers and hypoxia in rat carotid body responses.
    Donnelly DF; Kim I; Mulligan EM; Carroll JL
    Respir Physiol Neurobiol; 2014 Jan; 190():62-9. PubMed ID: 24096081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats.
    Carroll JL; Agarwal A; Donnelly DF; Kim I
    Adv Exp Med Biol; 2012; 758():249-53. PubMed ID: 23080169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia.
    Hempleman SC
    J Neurophysiol; 1996 Sep; 76(3):1880-6. PubMed ID: 8890300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells.
    Ortiz FC; Varas R
    Brain Res; 2010 Apr; 1323():74-83. PubMed ID: 20153302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage- and receptor-mediated activation of a non-selective cation channel in rat carotid body glomus cells.
    Wang J; Hogan JO; Kim D
    Respir Physiol Neurobiol; 2017 Mar; 237():13-21. PubMed ID: 28013061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-1beta inhibits IK and increases [Ca2+]i in the carotid body glomus cells and increases carotid sinus nerve firings in the rat.
    Shu HF; Wang BR; Wang SR; Yao W; Huang HP; Zhou Z; Wang X; Fan J; Wang T; Ju G
    Eur J Neurosci; 2007 Jun; 25(12):3638-47. PubMed ID: 17610583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular potassium and chemosensitivity in the rat carotid body, in vitro.
    Pepper DR; Landauer RC; Kumar P
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):833-43. PubMed ID: 8799903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of IP3 Receptors in Shaping the Carotid Chemoreceptor Response to Hypoxia But Not to Hypercapnia in the Rat Carotid Body: An Evidence Review.
    Mokashi A; Roy A; Baby SM; Mulligan EM; Lahiri S; Di Giulio C; Pokorski M
    Adv Exp Med Biol; 2021; 1289():1-25. PubMed ID: 32767266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.