These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30389496)

  • 1. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells.
    Pinho BR; Reis SD; Hartley RC; Murphy MP; Oliveira JMA
    Free Radic Biol Med; 2019 Jan; 130():318-327. PubMed ID: 30389496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat.
    Robb EL; Gawel JM; Aksentijević D; Cochemé HM; Stewart TS; Shchepinova MM; Qiang H; Prime TA; Bright TP; James AM; Shattock MJ; Senn HM; Hartley RC; Murphy MP
    Free Radic Biol Med; 2015 Dec; 89():883-94. PubMed ID: 26454075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced mitochondrial complex II activity enhances cell death via intracellular reactive oxygen species in STHdhQ111 striatal neurons with mutant huntingtin.
    Okada N; Yako T; Nakamura S; Shimazawa M; Hara H
    J Pharmacol Sci; 2021 Dec; 147(4):367-375. PubMed ID: 34663519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Oliveira AM; Oliveira CR; Rego AC
    Free Radic Biol Med; 2014 Sep; 74():129-44. PubMed ID: 24992836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis.
    Onur TS; Laitman A; Zhao H; Keyho R; Kim H; Wang J; Mair M; Wang H; Li L; Perez A; de Haro M; Wan YW; Allen G; Lu B; Al-Ramahi I; Liu Z; Botas J
    Elife; 2021 Apr; 10():. PubMed ID: 33871358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoxide dismutases.
    Rodriguez-Rocha H; Garcia-Garcia A; Pickett C; Li S; Jones J; Chen H; Webb B; Choi J; Zhou Y; Zimmerman MC; Franco R
    Free Radic Biol Med; 2013 Aug; 61():370-83. PubMed ID: 23602909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auraptene Mitigates Parkinson's Disease-Like Behavior by Protecting Inhibition of Mitochondrial Respiration and Scavenging Reactive Oxygen Species.
    Jang Y; Choo H; Lee MJ; Han J; Kim SJ; Ju X; Cui J; Lee YL; Ryu MJ; Oh ES; Choi SY; Chung W; Kweon GR; Heo JY
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial and Redox-Based Therapeutic Strategies in Huntington's Disease.
    Fão L; Rego AC
    Antioxid Redox Signal; 2021 Mar; 34(8):650-673. PubMed ID: 32498555
    [No Abstract]   [Full Text] [Related]  

  • 9. Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy.
    Sasazawa Y; Sato N; Umezawa K; Simizu S
    J Biol Chem; 2015 Mar; 290(10):6168-78. PubMed ID: 25596530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases.
    Tabassum R; Jeong NY
    Int J Med Sci; 2019; 16(10):1386-1396. PubMed ID: 31692944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease.
    Siddiqui A; Rivera-Sánchez S; Castro Mdel R; Acevedo-Torres K; Rane A; Torres-Ramos CA; Nicholls DG; Andersen JK; Ayala-Torres S
    Free Radic Biol Med; 2012 Oct; 53(7):1478-88. PubMed ID: 22709585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of c-Src/Fyn Proteins Rescues Mitochondrial Dysfunction in Huntington's Disease.
    Fão L; Coelho P; Duarte L; Vilaça R; Hayden MR; Mota SI; Rego AC
    Antioxid Redox Signal; 2023 Jan; 38(1-3):95-114. PubMed ID: 35651273
    [No Abstract]   [Full Text] [Related]  

  • 13. Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics.
    Naia L; Carmo C; Campesan S; Fão L; Cotton VE; Valero J; Lopes C; Rosenstock TR; Giorgini F; Rego AC
    Free Radic Biol Med; 2021 Feb; 163():163-179. PubMed ID: 33285261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.
    Clemens LE; Weber JJ; Wlodkowski TT; Yu-Taeger L; Michaud M; Calaminus C; Eckert SH; Gaca J; Weiss A; Magg JC; Jansson EK; Eckert GP; Pichler BJ; Bordet T; Pruss RM; Riess O; Nguyen HP
    Brain; 2015 Dec; 138(Pt 12):3632-53. PubMed ID: 26490331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidizing effects of exogenous stressors in Huntington's disease knock-in striatal cells--protective effect of cystamine and creatine.
    Ribeiro M; Silva AC; Rodrigues J; Naia L; Rego AC
    Toxicol Sci; 2013 Dec; 136(2):487-99. PubMed ID: 24008831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease.
    Quintanilla RA; Jin YN; von Bernhardi R; Johnson GV
    Mol Neurodegener; 2013 Dec; 8():45. PubMed ID: 24330821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Mitochondrial Function in In Vitro and Ex Vivo Models of Huntington's Disease.
    Ferreira IL; Carmo C; Naia L; I Mota S; Cristina Rego A
    Methods Mol Biol; 2018; 1780():415-442. PubMed ID: 29856029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis.
    Antonucci S; Mulvey JF; Burger N; Di Sante M; Hall AR; Hinchy EC; Caldwell ST; Gruszczyk AV; Deshwal S; Hartley RC; Kaludercic N; Murphy MP; Di Lisa F; Krieg T
    Free Radic Biol Med; 2019 Apr; 134():678-687. PubMed ID: 30731114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of prion-like transfer in Huntington's disease models.
    Jansen AH; Batenburg KL; Pecho-Vrieseling E; Reits EA
    Biochim Biophys Acta Mol Basis Dis; 2017 Mar; 1863(3):793-800. PubMed ID: 28040507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibroblast growth factor 9 activates anti-oxidative functions of Nrf2 through ERK signalling in striatal cell models of Huntington's disease.
    Yusuf IO; Chen HM; Cheng PH; Chang CY; Tsai SJ; Chuang JI; Wu CC; Huang BM; Sun HS; Yang SH
    Free Radic Biol Med; 2019 Jan; 130():256-266. PubMed ID: 30391672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.