These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1096 related articles for article (PubMed ID: 30389838)

  • 1. Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of
    Deng PY; Carlin D; Oh YM; Myrick LK; Warren ST; Cavalli V; Klyachko VA
    J Neurosci; 2019 Jan; 39(1):28-43. PubMed ID: 30389838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome.
    Deng PY; Klyachko VA
    J Physiol; 2016 Jan; 594(1):83-97. PubMed ID: 26427907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice.
    Luque MA; Morcuende S; Torres B; Herrero L
    J Physiol; 2024 Aug; 602(15):3769-3791. PubMed ID: 38976504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragile X mental retardation protein modulates somatic D-type K
    Kalmbach BE; Brager DH
    J Neurophysiol; 2020 Dec; 124(6):1766-1773. PubMed ID: 32997566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome.
    Gray EE; Murphy JG; Liu Y; Trang I; Tabor GT; Lin L; Hoffman DA
    J Neurosci; 2019 Sep; 39(38):7453-7464. PubMed ID: 31350260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo.
    Higashimori H; Schin CS; Chiang MS; Morel L; Shoneye TA; Nelson DL; Yang Y
    J Neurosci; 2016 Jul; 36(27):7079-94. PubMed ID: 27383586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice.
    El-Hassar L; Song L; Tan WJT; Large CH; Alvaro G; Santos-Sacchi J; Kaczmarek LK
    J Neurosci; 2019 Jun; 39(24):4797-4813. PubMed ID: 30936239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice.
    Deng PY; Klyachko VA
    Cell Rep; 2016 Sep; 16(12):3157-3166. PubMed ID: 27653682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired Reliability and Precision of Spiking in Adults But Not Juveniles in a Mouse Model of Fragile X Syndrome.
    Dwivedi D; Chattarji S; Bhalla US
    eNeuro; 2019; 6(6):. PubMed ID: 31685673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragile X Mental Retardation Protein Bidirectionally Controls Dendritic I
    Brandalise F; Kalmbach BE; Mehta P; Thornton O; Johnston D; Zemelman BV; Brager DH
    J Neurosci; 2020 Jul; 40(27):5327-5340. PubMed ID: 32467357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragile X mental retardation protein regulates protein expression and mRNA translation of the potassium channel Kv4.2.
    Gross C; Yao X; Pong DL; Jeromin A; Bassell GJ
    J Neurosci; 2011 Apr; 31(15):5693-8. PubMed ID: 21490210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astroglial Kir4.1 potassium channel deficit drives neuronal hyperexcitability and behavioral defects in Fragile X syndrome mouse model.
    Bataveljic D; Pivonkova H; de Concini V; Hébert B; Ezan P; Briault S; Bemelmans AP; Pichon J; Menuet A; Rouach N
    Nat Commun; 2024 Apr; 15(1):3583. PubMed ID: 38678030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development-related aberrations in Kv1.1 α-subunit exert disruptive effects on bioelectrical activities of neurons in a mouse model of fragile X syndrome.
    Zhu P; Li J; Zhang L; Liang Z; Tang B; Liao WP; Yi YH; Su T
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt A):140-151. PubMed ID: 29481897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FMRP Sustains Presynaptic Function via Control of Activity-Dependent Bulk Endocytosis.
    Bonnycastle K; Kind PC; Cousin MA
    J Neurosci; 2022 Feb; 42(8):1618-1628. PubMed ID: 34996816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP.
    Zhan X; Asmara H; Pfaffinger P; Turner RW
    J Neurosci; 2024 May; 44(21):. PubMed ID: 38664011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitability is increased in hippocampal CA1 pyramidal cells of Fmr1 knockout mice.
    Luque MA; Beltran-Matas P; Marin MC; Torres B; Herrero L
    PLoS One; 2017; 12(9):e0185067. PubMed ID: 28931075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome.
    Deng PY; Sojka D; Klyachko VA
    J Neurosci; 2011 Jul; 31(30):10971-82. PubMed ID: 21795546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased transient Na
    Routh BN; Rathour RK; Baumgardner ME; Kalmbach BE; Johnston D; Brager DH
    J Physiol; 2017 Jul; 595(13):4431-4448. PubMed ID: 28370141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.
    Lovelace JW; Wen TH; Reinhard S; Hsu MS; Sidhu H; Ethell IM; Binder DK; Razak KA
    Neurobiol Dis; 2016 May; 89():126-35. PubMed ID: 26850918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome.
    Zhang L; Alger BE
    J Neurosci; 2010 Apr; 30(16):5724-9. PubMed ID: 20410124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.