These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30389966)

  • 1. Fast confocal fluorescence imaging in freely behaving mice.
    Dussaux C; Szabo V; Chastagnier Y; Fodor J; Léger JF; Bourdieu L; Perroy J; Ventalon C
    Sci Rep; 2018 Nov; 8(1):16262. PubMed ID: 30389966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo.
    Engelbrecht CJ; Johnston RS; Seibel EJ; Helmchen F
    Opt Express; 2008 Apr; 16(8):5556-64. PubMed ID: 18542658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy.
    Laemmel E; Genet M; Le Goualher G; Perchant A; Le Gargasson JF; Vicaut E
    J Vasc Res; 2004; 41(5):400-11. PubMed ID: 15467299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature micro-wire based optical fiber-field access device.
    Pevec S; Donlagic D
    Opt Express; 2012 Dec; 20(25):27874-87. PubMed ID: 23262732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of cortical structures and microvasculature using extended-focus optical coherence tomography at 1.3  μm.
    Marchand PJ; Szlag D; Extermann J; Bouwens A; Nguyen D; Rudin M; Lasser T
    Opt Lett; 2018 Apr; 43(8):1782-1785. PubMed ID: 29652363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics.
    Fan JL; Rivera JA; Sun W; Peterson J; Haeberle H; Rubin S; Ji N
    Nat Commun; 2020 Nov; 11(1):6020. PubMed ID: 33243995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-optic fluorescence imaging.
    Flusberg BA; Cocker ED; Piyawattanametha W; Jung JC; Cheung EL; Schnitzer MJ
    Nat Methods; 2005 Dec; 2(12):941-50. PubMed ID: 16299479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.
    Bravo-Zanoguera ME; Laris CA; Nguyen LK; Oliva M; Price JH
    J Biomed Opt; 2007; 12(3):034011. PubMed ID: 17614719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber optic in vivo imaging in the mammalian nervous system.
    Mehta AD; Jung JC; Flusberg BA; Schnitzer MJ
    Curr Opin Neurobiol; 2004 Oct; 14(5):617-28. PubMed ID: 15464896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic in vivo imaging of microvasculature and perfusion by miniaturized confocal laser microscopy.
    Goetz M; Thomas S; Heimann A; Delaney P; Schneider C; Relle M; Schwarting A; Galle PR; Kempski O; Neurath MF; Kiesslich R
    Eur Surg Res; 2008; 41(3):290-7. PubMed ID: 18667833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Video-rate volumetric neuronal imaging using 3D targeted illumination.
    Xiao S; Tseng HA; Gritton H; Han X; Mertz J
    Sci Rep; 2018 May; 8(1):7921. PubMed ID: 29784920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging.
    Swindle LD; Thomas SG; Freeman M; Delaney PM
    J Invest Dermatol; 2003 Oct; 121(4):706-12. PubMed ID: 14632185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts.
    Ozbay BN; Losacco JT; Cormack R; Weir R; Bright VM; Gopinath JT; Restrepo D; Gibson EA
    Opt Lett; 2015 Jun; 40(11):2553-6. PubMed ID: 26030555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution, high speed, long working distance, large field of view confocal fluorescence microscope.
    Pacheco S; Wang C; Chawla MK; Nguyen M; Baggett BK; Utzinger U; Barnes CA; Liang R
    Sci Rep; 2017 Oct; 7(1):13349. PubMed ID: 29042677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging.
    Zhang M; Yue J; Cui R; Ma Z; Wan H; Wang F; Zhu S; Zhou Y; Kuang Y; Zhong Y; Pang DW; Dai H
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6590-6595. PubMed ID: 29891702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mercury arc lamp-based multi-color confocal real time imaging system for cellular structure and function.
    Saito K; Kobayashi K; Tani T; Nagai T
    Cell Struct Funct; 2008; 33(1):133-41. PubMed ID: 18685226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A handheld electromagnetically actuated fiber optic raster scanner for reflectance confocal imaging of biological tissues.
    Mansoor H; Zeng H; Tai IT; Zhao J; Chiao M
    IEEE Trans Biomed Eng; 2013 May; 60(5):1431-8. PubMed ID: 23292783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative microendoscopic system combined with conventional microscope for live animal tissue imaging.
    Köhler M; Paulson B; Kim Y; Lee S; Dicker A; van Krieken P; Kim JY; Pack CG; Joo J; Berggren PO; Kim JK
    J Biophotonics; 2018 Dec; 11(12):e201800206. PubMed ID: 30079609
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.