These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 30389990)
1. Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress. Wu B; Munkhtuya Y; Li J; Hu Y; Zhang Q; Zhang Z Sci Rep; 2018 Nov; 8(1):16248. PubMed ID: 30389990 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P; Gu M BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. Wu B; Hu Y; Huo P; Zhang Q; Chen X; Zhang Z PLoS One; 2017; 12(2):e0171451. PubMed ID: 28192458 [TBL] [Abstract][Full Text] [Related]
4. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S; Gontia-Mishra I; Tiwari S Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system. Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. Li YF; Zheng Y; Vemireddy LR; Panda SK; Jose S; Ranjan A; Panda P; Govindan G; Cui J; Wei K; Yaish MW; Naidoo GC; Sunkar R BMC Genomics; 2018 Dec; 19(Suppl 10):935. PubMed ID: 30598105 [TBL] [Abstract][Full Text] [Related]
7. iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress. Hussain S; Zhu C; Bai Z; Huang J; Zhu L; Cao X; Nanda S; Hussain S; Riaz A; Liang Q; Wang L; Li Y; Jin Q; Zhang J Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696055 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic analysis reveals candidate genes associated with salinity stress tolerance during the early vegetative stage in fababean genotype, Hassawi-2. Afzal M; Alghamdi SS; Khan MA; Al-Faifi SA; Rahman MHU Sci Rep; 2023 Dec; 13(1):21223. PubMed ID: 38040745 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna unguiculata ssp. sesquipedalis) under salt stress. Pan L; Yu X; Shao J; Liu Z; Gao T; Zheng Y; Zeng C; Liang C; Chen C PLoS One; 2019; 14(7):e0219799. PubMed ID: 31299052 [TBL] [Abstract][Full Text] [Related]
10. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. Hu L; Li H; Chen L; Lou Y; Amombo E; Fu J BMC Genomics; 2015 Aug; 16(1):575. PubMed ID: 26238595 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress. Xiong X; Wei YQ; Chen JH; Liu N; Zhang YJ Plant Physiol Biochem; 2020 Jun; 151():323-333. PubMed ID: 32251957 [TBL] [Abstract][Full Text] [Related]
12. Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Deng C; Zhang Z; Yan G; Wang F; Zhao L; Liu N; Abudurezike A; Li Y; Wang W; Shi S Sci Rep; 2020 Nov; 10(1):20669. PubMed ID: 33244037 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA; Shao J; Nemchinov LG Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago sativa L.) cultivars with different salt tolerance. Bhattarai S; Fu YB; Coulman B; Tanino K; Karunakaran C; Biligetu B BMC Plant Biol; 2021 Oct; 21(1):446. PubMed ID: 34610811 [TBL] [Abstract][Full Text] [Related]
15. Salt‑responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Wang W; Pang J; Zhang F; Sun L; Yang L; Fu T; Guo L; Siddique KHM Sci Rep; 2022 Jan; 12(1):1666. PubMed ID: 35102232 [TBL] [Abstract][Full Text] [Related]
16. De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance. Nayak SS; Pradhan S; Sahoo D; Parida A Sci Rep; 2020 Mar; 10(1):5192. PubMed ID: 32251358 [TBL] [Abstract][Full Text] [Related]
17. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
19. The comparative transcriptome analysis of two green super rice genotypes with varying tolerance to salt stress. Zahra N; Uzair M; Zaid IU; Attia KA; Inam S; Fiaz S; Abdallah RM; Naeem MK; Farooq U; Rehman N; Ali GM; Xu J; Li Z; Khan MR Mol Biol Rep; 2023 Dec; 51(1):22. PubMed ID: 38110786 [TBL] [Abstract][Full Text] [Related]
20. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Xu Z; Chen X; Lu X; Zhao B; Yang Y; Liu J Plant Physiol Biochem; 2021 Mar; 160():315-328. PubMed ID: 33545609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]