BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 30390250)

  • 1. The Role of IGF-1 Signaling in Skeletal Muscle Atrophy.
    Timmer LT; Hoogaars WMH; Jaspers RT
    Adv Exp Med Biol; 2018; 1088():109-137. PubMed ID: 30390250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction.
    Feng L; Li B; Xi Y; Cai M; Tian Z
    Am J Physiol Cell Physiol; 2022 Feb; 322(2):C164-C176. PubMed ID: 34852207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide Pulse Width Electroacupuncture Ameliorates Denervation-Induced Skeletal Muscle Atrophy in Rats via IGF-1/PI3K/Akt Pathway.
    Huang XQ; Xu JS; Ye XR; Chen X
    Chin J Integr Med; 2021 Jun; 27(6):446-454. PubMed ID: 33660125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ISLR regulates skeletal muscle atrophy via IGF1-PI3K/Akt-Foxo signaling pathway.
    Cui C; Han S; Shen X; He H; Chen Y; Zhao J; Wei Y; Wang Y; Zhu Q; Li D; Yin H
    Cell Tissue Res; 2020 Sep; 381(3):479-492. PubMed ID: 32696215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.
    Morales MG; Abrigo J; Acuña MJ; Santos RA; Bader M; Brandan E; Simon F; Olguin H; Cabrera D; Cabello-Verrugio C
    Dis Model Mech; 2016 Apr; 9(4):441-9. PubMed ID: 26851244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy.
    Yoshida T; Delafontaine P
    Cells; 2020 Aug; 9(9):. PubMed ID: 32858949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy.
    Glass DJ
    Curr Top Microbiol Immunol; 2010; 346():267-78. PubMed ID: 20593312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways.
    Rommel C; Bodine SC; Clarke BA; Rossman R; Nunez L; Stitt TN; Yancopoulos GD; Glass DJ
    Nat Cell Biol; 2001 Nov; 3(11):1009-13. PubMed ID: 11715022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links.
    Lee EJ; Neppl RL
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34063658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading.
    Zhang ZK; Li J; Liu J; Guo B; Leung A; Zhang G; Zhang BT
    Sci Rep; 2016 Feb; 6():20300. PubMed ID: 26831566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling.
    Quinn LS; Anderson BG; Plymate SR
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1538-51. PubMed ID: 17940216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progranulin compensates for blocked IGF-1 signaling to promote myotube hypertrophy in C2C12 myoblasts via the PI3K/Akt/mTOR pathway.
    Hu SY; Tai CC; Li YH; Wu JL
    FEBS Lett; 2012 Sep; 586(19):3485-92. PubMed ID: 22967900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass.
    Frost RA; Lang CH
    J Appl Physiol (1985); 2007 Jul; 103(1):378-87. PubMed ID: 17332274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway.
    Ferretti R; Moura EG; Dos Santos VC; Caldeira EJ; Conte M; Matsumura CY; Pertille A; Mosqueira M
    PLoS One; 2018; 13(10):e0199728. PubMed ID: 30286093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous insulin-like growth factor 1 attenuates cisplatin-induced muscle atrophy in mice.
    Sakai H; Asami M; Naito H; Kitora S; Suzuki Y; Miyauchi Y; Tachinooka R; Yoshida S; Kon R; Ikarashi N; Chiba Y; Kamei J
    J Cachexia Sarcopenia Muscle; 2021 Dec; 12(6):1570-1581. PubMed ID: 34268902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1.
    Sacheck JM; Ohtsuka A; McLary SC; Goldberg AL
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E591-601. PubMed ID: 15100091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of insulin-like growth factor 1 on muscle atrophy and motor function in rats with brain ischemia.
    Chang HC; Yang YR; Wang PS; Kuo CH; Wang RY
    Chin J Physiol; 2010 Oct; 53(5):337-48. PubMed ID: 21793345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular signaling during skeletal muscle atrophy.
    Kandarian SC; Jackman RW
    Muscle Nerve; 2006 Feb; 33(2):155-65. PubMed ID: 16228971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway.
    Li Z; Cai B; Abdalla BA; Zhu X; Zheng M; Han P; Nie Q; Zhang X
    J Cachexia Sarcopenia Muscle; 2019 Apr; 10(2):391-410. PubMed ID: 30701698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling reveals modulation of both nuclear influx and efflux of Foxo1 by the IGF-I/PI3K/Akt pathway in skeletal muscle fibers.
    Wimmer RJ; Liu Y; Schachter TN; Stonko DP; Peercy BE; Schneider MF
    Am J Physiol Cell Physiol; 2014 Mar; 306(6):C570-84. PubMed ID: 24429066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.