These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30390267)

  • 1. Nutritional Considerations in Preventing Muscle Atrophy.
    Cretoiu SM; Zugravu CA
    Adv Exp Med Biol; 2018; 1088():497-528. PubMed ID: 30390267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle loss: cachexia, sarcopenia, and inactivity.
    Evans WJ
    Am J Clin Nutr; 2010 Apr; 91(4):1123S-1127S. PubMed ID: 20164314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients.
    Marshall RN; Smeuninx B; Morgan PT; Breen L
    Nutrients; 2020 May; 12(5):. PubMed ID: 32466126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional strategies to attenuate muscle disuse atrophy.
    Wall BT; van Loon LJ
    Nutr Rev; 2013 Apr; 71(4):195-208. PubMed ID: 23550781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery.
    Magne H; Savary-Auzeloux I; Rémond D; Dardevet D
    Nutr Res Rev; 2013 Dec; 26(2):149-65. PubMed ID: 23930668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of disuse-induced skeletal muscle atrophy: exercise and nutrition countermeasures to prevent protein loss.
    Bajotto G; Shimomura Y
    J Nutr Sci Vitaminol (Tokyo); 2006 Aug; 52(4):233-47. PubMed ID: 17087049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy.
    Glover EI; Phillips SM
    Curr Opin Clin Nutr Metab Care; 2010 Nov; 13(6):630-4. PubMed ID: 20829685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance exercise with anti-inflammatory foods attenuates skeletal muscle atrophy induced by chronic inflammation.
    Sumi K; Ashida K; Nakazato K
    J Appl Physiol (1985); 2020 Jan; 128(1):197-211. PubMed ID: 31804892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining anabolic resistance: implications for delivery of clinical care nutrition.
    Morton RW; Traylor DA; Weijs PJM; Phillips SM
    Curr Opin Crit Care; 2018 Apr; 24(2):124-130. PubMed ID: 29389741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia.
    Biolo G; Cederholm T; Muscaritoli M
    Clin Nutr; 2014 Oct; 33(5):737-48. PubMed ID: 24785098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans.
    Wilkinson DJ; Piasecki M; Atherton PJ
    Ageing Res Rev; 2018 Nov; 47():123-132. PubMed ID: 30048806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
    Urso ML
    Med Sci Sports Exerc; 2009 Oct; 41(10):1860-8. PubMed ID: 19727028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary strategies to attenuate muscle loss during recovery from injury.
    Tipton KD
    Nestle Nutr Inst Workshop Ser; 2013; 75():51-61. PubMed ID: 23765350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Myogenic and Protein Turnover Signaling in Skeletal Muscle of Chronic Obstructive Pulmonary Disease Patients With Sarcopenia.
    Kneppers AEM; Langen RCJ; Gosker HR; Verdijk LB; Cebron Lipovec N; Leermakers PA; Kelders MCJM; de Theije CC; Omersa D; Lainscak M; Schols AMWJ
    J Am Med Dir Assoc; 2017 Jul; 18(7):637.e1-637.e11. PubMed ID: 28578881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WISE-2005: Countermeasures to prevent muscle deconditioning during bed rest in women.
    Lee SM; Schneider SM; Feiveson AH; Macias BR; Smith SM; Watenpaugh DE; Hargens AR
    J Appl Physiol (1985); 2014 Mar; 116(6):654-67. PubMed ID: 24458754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension.
    Eash J; Olsen A; Breur G; Gerrard D; Hannon K
    BMC Musculoskelet Disord; 2007 Apr; 8():32. PubMed ID: 17425786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Exercise and Nutrition in the Prevention of Sarcopenia.
    Makanae Y; Fujita S
    J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S125-7. PubMed ID: 26598823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.