These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30390268)

  • 1. Physical Exercise for Muscle Atrophy.
    Shen L; Meng X; Zhang Z; Wang T
    Adv Exp Med Biol; 2018; 1088():529-545. PubMed ID: 30390268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle mitochondria: a major player in exercise, health and disease.
    Russell AP; Foletta VC; Snow RJ; Wadley GD
    Biochim Biophys Acta; 2014 Apr; 1840(4):1276-84. PubMed ID: 24291686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle.
    Joseph AM; Adhihetty PJ; Leeuwenburgh C
    J Physiol; 2016 Sep; 594(18):5105-23. PubMed ID: 26503074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Physiological value of physical exercise and mitochondrial volume of working muscles in people exposed to long term hypokinesia. Effect of local resistance exercise ].
    Shenkman BS; Vinogradova OL; Mazin MG; Kiseleva EV; Belozerova IN; Nemirovskaia TL; Trusheva TS; Tikhomirov EP
    Fiziol Cheloveka; 2003; 29(2):75-80. PubMed ID: 12751225
    [No Abstract]   [Full Text] [Related]  

  • 5. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise.
    Perry BD; Caldow MK; Brennan-Speranza TC; Sbaraglia M; Jerums G; Garnham A; Wong C; Levinger P; Asrar Ul Haq M; Hare DL; Price SR; Levinger I
    Exerc Immunol Rev; 2016; 22():94-109. PubMed ID: 26859514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle adaptations with age, inactivity, and therapeutic exercise.
    Thompson LV
    J Orthop Sports Phys Ther; 2002 Feb; 32(2):44-57. PubMed ID: 11838580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutritional Considerations in Preventing Muscle Atrophy.
    Cretoiu SM; Zugravu CA
    Adv Exp Med Biol; 2018; 1088():497-528. PubMed ID: 30390267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation.
    Romanello V; Sandri M
    Curr Hypertens Rep; 2010 Dec; 12(6):433-9. PubMed ID: 20967516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise and Muscle Atrophy.
    He N; Ye H
    Adv Exp Med Biol; 2020; 1228():255-267. PubMed ID: 32342463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effects of acute exercise preconditioning on disuse-induced muscular atrophy in aged muscle: a narrative literature review.
    Yoshihara T; Naito H
    J Physiol Sci; 2020 Nov; 70(1):55. PubMed ID: 33246401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
    Memme JM; Slavin M; Moradi N; Hood DA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment.
    Deng C; Wang P; Zhang X; Wang Y
    Life Sci Space Res (Amst); 2015 Apr; 5():1-5. PubMed ID: 25821722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphenols and their potential role in preventing skeletal muscle atrophy.
    Salucci S; Falcieri E
    Nutr Res; 2020 Feb; 74():10-22. PubMed ID: 31895993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats.
    Adams GR; Haddad F; Bodell PW; Tran PD; Baldwin KM
    J Appl Physiol (1985); 2007 Nov; 103(5):1644-54. PubMed ID: 17872405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptotic signaling in skeletal muscle fibers during atrophy.
    Sandri M
    Curr Opin Clin Nutr Metab Care; 2002 May; 5(3):249-53. PubMed ID: 11953649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise strategies to protect against the impact of short-term reduced physical activity on muscle function and markers of health in older men: study protocol for a randomised controlled trial.
    Perkin OJ; Travers RL; Gonzalez JT; Turner JE; Gillison F; Wilson C; McGuigan PM; Thompson D; Stokes KA
    Trials; 2016 Aug; 17():381. PubMed ID: 27484001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats.
    Moreira JB; Bechara LR; Bozi LH; Jannig PR; Monteiro AW; Dourado PM; Wisløff U; Brum PC
    J Appl Physiol (1985); 2013 Apr; 114(8):1029-41. PubMed ID: 23429866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.