These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30390319)

  • 41. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid single-breath-hold 3D late gadolinium enhancement cardiac MRI using a stack-of-spirals acquisition.
    Shin T; Lustig M; Nishimura DG; Hu BS
    J Magn Reson Imaging; 2014 Dec; 40(6):1496-502. PubMed ID: 24243575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution dynamic speech imaging with joint low-rank and sparsity constraints.
    Fu M; Zhao B; Carignan C; Shosted RK; Perry JL; Kuehn DP; Liang ZP; Sutton BP
    Magn Reson Med; 2015 May; 73(5):1820-32. PubMed ID: 24912452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Super-Resolved Dynamic 3D Reconstruction of the Vocal Tract during Natural Speech.
    Isaieva K; Odille F; Laprie Y; Drouot G; Felblinger J; Vuissoz PA
    J Imaging; 2023 Oct; 9(10):. PubMed ID: 37888339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laryngeal gestures during stop production using high-speed digital images.
    Hong KH; Kim HK; Niimi S
    J Voice; 2002 Jun; 16(2):207-14. PubMed ID: 12150373
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A model of speech production based on the acoustic relativity of the vocal tract.
    Story BH; Bunton K
    J Acoust Soc Am; 2019 Oct; 146(4):2522. PubMed ID: 31671993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of An Unbiased Spatio-Temporal Atlas of the Tongue During Speech.
    Woo J; Xing F; Lee J; Stone M; Prince JL
    Inf Process Med Imaging; 2015; 24():723-32. PubMed ID: 26221715
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Jaw and order.
    Mooshammer C; Hoole P; Geumann A
    Lang Speech; 2007; 50(Pt 2):145-76. PubMed ID: 17702471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech.
    Ruthven M; Miquel ME; King AP
    Comput Methods Programs Biomed; 2021 Jan; 198():105814. PubMed ID: 33197740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimation of vocal tract shape for VCV syllables for a speech training aid.
    Shah MS; Pandey PC
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6642-5. PubMed ID: 17281795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Free-breathing liver perfusion imaging using 3-dimensional through-time spiral generalized autocalibrating partially parallel acquisition acceleration.
    Chen Y; Lee GR; Wright KL; Badve C; Nakamoto D; Yu A; Schluchter MD; Griswold MA; Seiberlich N; Gulani V
    Invest Radiol; 2015 Jun; 50(6):367-75. PubMed ID: 25946703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterizing Articulation in Apraxic Speech Using Real-Time Magnetic Resonance Imaging.
    Hagedorn C; Proctor M; Goldstein L; Wilson SM; Miller B; Gorno-Tempini ML; Narayanan SS
    J Speech Lang Hear Res; 2017 Apr; 60(4):877-891. PubMed ID: 28314241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience.
    Fritz J; Raithel E; Thawait GK; Gilson W; Papp DF
    Invest Radiol; 2016 Jun; 51(6):400-9. PubMed ID: 26685106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A method for measurement of the vocal tract impedance at the mouth.
    Kob M; Neuschaefer-Rube C
    Med Eng Phys; 2002; 24(7-8):467-71. PubMed ID: 12237041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.