These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 30390527)
1. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
2. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity. Sangion A; Gramatica P Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576 [TBL] [Abstract][Full Text] [Related]
3. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach. Khan K; Roy K SAR QSAR Environ Res; 2017 Jul; 28(7):567-594. PubMed ID: 28780892 [TBL] [Abstract][Full Text] [Related]
4. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR. Li F; Sun G; Fan T; Zhang N; Zhao L; Zhong R; Peng Y Aquat Toxicol; 2023 Feb; 255():106393. PubMed ID: 36621240 [TBL] [Abstract][Full Text] [Related]
5. Ecotoxicological QSAR modelling of organic chemicals against Khan K; Roy K SAR QSAR Environ Res; 2019 Sep; 30(9):665-681. PubMed ID: 31474156 [TBL] [Abstract][Full Text] [Related]
6. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417 [TBL] [Abstract][Full Text] [Related]
7. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of CADASTER QSAR models for the aquatic toxicity of (benzo)triazoles and prioritisation by consensus prediction. Cassani S; Kovarich S; Papa E; Roy PP; Rahmberg M; Nilsson S; Sahlin U; Jeliazkova N; Kochev N; Pukalov O; Tetko I; Brandmaier S; Durjava MK; Kolar B; Peijnenburg W; Gramatica P Altern Lab Anim; 2013 Mar; 41(1):49-64. PubMed ID: 23614544 [TBL] [Abstract][Full Text] [Related]
9. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
10. Comparing in vivo data and in silico predictions for acute effects assessment of biocidal active substances and metabolites for aquatic organisms. Blázquez M; Andreu-Sánchez O; Ranero I; Fernández-Cruz ML; Benfenati E Ecotoxicol Environ Saf; 2020 Dec; 205():111291. PubMed ID: 32956865 [TBL] [Abstract][Full Text] [Related]
11. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Hossain KA; Roy K Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287 [TBL] [Abstract][Full Text] [Related]
12. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish. Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559 [TBL] [Abstract][Full Text] [Related]
13. Ecotoxicological QSAR study of fused/non-fused polycyclic aromatic hydrocarbons (FNFPAHs): Assessment and priority ranking of the acute toxicity to Pimephales promelas by QSAR and consensus modeling methods. Chen S; Sun G; Fan T; Li F; Xu Y; Zhang N; Zhao L; Zhong R Sci Total Environ; 2023 Jun; 876():162736. PubMed ID: 36907405 [TBL] [Abstract][Full Text] [Related]
14. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata. Yu X Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003 [TBL] [Abstract][Full Text] [Related]
15. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling. Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385 [TBL] [Abstract][Full Text] [Related]
16. Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata. Ding F; Wang Z; Yang X; Shi L; Liu J; Chen G SAR QSAR Environ Res; 2019 Jan; 30(1):39-50. PubMed ID: 30477347 [TBL] [Abstract][Full Text] [Related]
17. Predictive Computational Tools for Assessment of Ecotoxicological Activity of Organic Micropollutants in Various Water Sources in Brazil. de Morais E Silva L; Lorenzo VP; Lopes WS; Scotti L; Scotti MT Mol Inform; 2019 Aug; 38(8-9):e1800156. PubMed ID: 30725528 [TBL] [Abstract][Full Text] [Related]
18. QSAR study of the acute toxicity to fathead minnow based on a large dataset. Wu X; Zhang Q; Hu J SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563 [TBL] [Abstract][Full Text] [Related]
19. Chemometric modeling of Daphnia magna toxicity of agrochemicals. Khan PM; Roy K; Benfenati E Chemosphere; 2019 Jun; 224():470-479. PubMed ID: 30831498 [TBL] [Abstract][Full Text] [Related]
20. Pharmaceuticals in the environment: good practice in predicting acute ecotoxicological effects. Madden JC; Enoch SJ; Hewitt M; Cronin MT Toxicol Lett; 2009 Mar; 185(2):85-101. PubMed ID: 19118609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]