These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 30390541)
21. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Kannan S; Gariepy Y; Raghavan GSV Waste Manag; 2017 Jul; 65():159-168. PubMed ID: 28412097 [TBL] [Abstract][Full Text] [Related]
22. Comparative production of biochars from corn stalk and cow manure. Liu Z; Zhang Y; Liu Z Bioresour Technol; 2019 Nov; 291():121855. PubMed ID: 31357042 [TBL] [Abstract][Full Text] [Related]
23. Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste. Lei Q; Kannan S; Raghavan V Waste Manag; 2021 May; 126():106-118. PubMed ID: 33743337 [TBL] [Abstract][Full Text] [Related]
24. Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: A review. Wang Q; Wu S; Cui D; Zhou H; Wu D; Pan S; Xu F; Wang Z Sci Total Environ; 2022 Dec; 850():158034. PubMed ID: 35970457 [TBL] [Abstract][Full Text] [Related]
25. Toxicity evaluation of process water from hydrothermal carbonization of sugarcane industry by-products. Fregolente LG; Miguel TBAR; de Castro Miguel E; de Almeida Melo C; Moreira AB; Ferreira OP; Bisinoti MC Environ Sci Pollut Res Int; 2019 Sep; 26(27):27579-27589. PubMed ID: 29594880 [TBL] [Abstract][Full Text] [Related]
26. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Sharma HB; Panigrahi S; Dubey BK Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932 [TBL] [Abstract][Full Text] [Related]
27. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Sharma HB; Dubey BK Waste Manag; 2020 Dec; 118():521-533. PubMed ID: 32980731 [TBL] [Abstract][Full Text] [Related]
28. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques. Lu X; Jordan B; Berge ND Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099 [TBL] [Abstract][Full Text] [Related]
29. Study on the auxin-like activity of organic compounds extracted from corn waste hydrochar prepared by hydrothermal carbonization. Lima ETG; Sales ÉDS; Saraiva RA; Rachide Nunes R Environ Technol; 2024 Nov; 45(26):5558-5567. PubMed ID: 38190259 [TBL] [Abstract][Full Text] [Related]
30. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404 [TBL] [Abstract][Full Text] [Related]
31. Study on the Effect of Hydrothermal Carbonization Parameters on Fuel Properties of Sewage Sludge Hydrochar. Hejna M; Świechowski K; Białowiec A Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959500 [TBL] [Abstract][Full Text] [Related]
32. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor. Zabaleta I; Marchetti P; Lohri CR; Zurbrügg C Environ Technol; 2017 Nov; 38(22):2856-2865. PubMed ID: 28067116 [TBL] [Abstract][Full Text] [Related]
33. Pyrolytic and hydrothermal carbonization of date palm leaflets: Characteristics and ecotoxicological effects on seed germination of lettuce. Al-Wabel MI; Rafique MI; Ahmad M; Ahmad M; Hussain A; Usman ARA Saudi J Biol Sci; 2019 May; 26(4):665-672. PubMed ID: 31048990 [TBL] [Abstract][Full Text] [Related]
34. Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water. Yek PNY; Liew RK; Wan Mahari WA; Peng W; Sonne C; Kong SH; Tabatabaei M; Aghbashlo M; Park YK; Lam SS Sci Total Environ; 2022 Aug; 833():154968. PubMed ID: 35367546 [TBL] [Abstract][Full Text] [Related]
35. Evolution of elemental nitrogen involved in the carbonization mechanism and product features from wet biowaste. Zhang Z; Xuan X; Wang J; Zhao X; Yang J; Zhao Y; Qian J; TengfeiWang Sci Total Environ; 2023 Aug; 884():163826. PubMed ID: 37121324 [TBL] [Abstract][Full Text] [Related]
36. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Khoshbouy R; Takahashi F; Yoshikawa K Environ Res; 2019 Aug; 175():457-467. PubMed ID: 31158564 [TBL] [Abstract][Full Text] [Related]
37. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Khoo CG; Lam MK; Mohamed AR; Lee KT Environ Res; 2020 Sep; 188():109828. PubMed ID: 32798947 [TBL] [Abstract][Full Text] [Related]
38. Hydrothermal carbonization of food waste after oil extraction pre-treatment: Study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium. Su H; Zhou X; Zheng R; Zhou Z; Zhang Y; Zhu G; Yu C; Hantoko D; Yan M Sci Total Environ; 2021 Feb; 754():142192. PubMed ID: 32920412 [TBL] [Abstract][Full Text] [Related]
39. Hydrothermal carbonization of municipal waste streams. Berge ND; Ro KS; Mao J; Flora JR; Chappell MA; Bae S Environ Sci Technol; 2011 Jul; 45(13):5696-703. PubMed ID: 21671644 [TBL] [Abstract][Full Text] [Related]
40. Fate of nutrients during hydrothermal treatment of food waste. Sarrion A; Diaz E; de la Rubia MA; Mohedano AF Bioresour Technol; 2021 Dec; 342():125954. PubMed ID: 34592622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]