These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30390579)
1. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. Gómez-Sagasti MT; Epelde L; Anza M; Urra J; Alkorta I; Garbisu C J Hazard Mater; 2019 Feb; 364():591-599. PubMed ID: 30390579 [TBL] [Abstract][Full Text] [Related]
2. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Lefevre E; Bossa N; Wiesner MR; Gunsch CK Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610 [TBL] [Abstract][Full Text] [Related]
3. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Pawlett M; Ritz K; Dorey RA; Rocks S; Ramsden J; Harris JA Environ Sci Pollut Res Int; 2013 Feb; 20(2):1041-9. PubMed ID: 23007947 [TBL] [Abstract][Full Text] [Related]
4. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540 [TBL] [Abstract][Full Text] [Related]
5. Reducing As availability in calcareous soils using nanoscale zero valent iron. Azari P; Bostani AA Environ Sci Pollut Res Int; 2017 Sep; 24(25):20438-20445. PubMed ID: 28707247 [TBL] [Abstract][Full Text] [Related]
6. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Němeček J; Lhotský O; Cajthaml T Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106 [TBL] [Abstract][Full Text] [Related]
8. New insights into the impact of nZVI on soil microbial biodiversity and functionality. Fajardo C; García-Cantalejo J; Botías P; Costa G; Nande M; Martin M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):157-167. PubMed ID: 30588856 [TBL] [Abstract][Full Text] [Related]
9. Sandy loam soil maintains better physicochemical parameters and more abundant beneficial microbiomes than clay soil in Xu X; Luo Q; Zhang N; Wu Y; Wei Q; Huang Z; Dong C PeerJ; 2024; 12():e18010. PubMed ID: 39308829 [TBL] [Abstract][Full Text] [Related]
10. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Saccà ML; Fajardo C; Costa G; Lobo C; Nande M; Martin M Chemosphere; 2014 Jun; 104():184-9. PubMed ID: 24287264 [TBL] [Abstract][Full Text] [Related]
11. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Li Z; Wang L; Wu J; Xu Y; Wang F; Tang X; Xu J; Ok YS; Meng J; Liu X Environ Pollut; 2020 May; 260():114098. PubMed ID: 32041084 [TBL] [Abstract][Full Text] [Related]
12. Soil properties determine the impact of nZVI on Lactuca sativa L and its rhizosphere. Gil-Díaz M; Álvarez-Aparicio J; Alonso J; Mancho C; Lobo MC; González J; García-Gonzalo P Environ Pollut; 2024 Jan; 341():122683. PubMed ID: 37827356 [TBL] [Abstract][Full Text] [Related]
13. Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems. Hui C; Liu B; Du L; Xu L; Zhao Y; Shen D; Long Y Environ Pollut; 2022 Aug; 306():119363. PubMed ID: 35489535 [TBL] [Abstract][Full Text] [Related]
14. Influence of nanoscale zero-valent iron on hydraulic conductivity of a residual clayey soil and modeling of the filtration parameter. Reginatto C; Cecchin I; Salvagni Heineck K; Thomé A; Reddy KR Environ Sci Pollut Res Int; 2020 Mar; 27(9):9288-9296. PubMed ID: 31916159 [TBL] [Abstract][Full Text] [Related]
15. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. El-Temsah YS; Joner EJ Chemosphere; 2012 Sep; 89(1):76-82. PubMed ID: 22595530 [TBL] [Abstract][Full Text] [Related]
16. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. Montes de Oca-Vásquez G; Solano-Campos F; Vega-Baudrit JR; López-Mondéjar R; Vera A; Moreno JL; Bastida F Sci Total Environ; 2020 Nov; 744():140919. PubMed ID: 32711321 [TBL] [Abstract][Full Text] [Related]
17. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J; Fang Z; Cheng W; Tsang PE; Zhao D Ecotoxicology; 2016 Aug; 25(6):1202-10. PubMed ID: 27207497 [TBL] [Abstract][Full Text] [Related]
18. Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Lacalle RG; Garbisu C; Becerril JM Environ Sci Pollut Res Int; 2020 Sep; 27(25):31726-31736. PubMed ID: 32504423 [TBL] [Abstract][Full Text] [Related]
19. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Ševců A; El-Temsah YS; Filip J; Joner EJ; Bobčíková K; Černík M Environ Sci Pollut Res Int; 2017 Sep; 24(26):21191-21202. PubMed ID: 28733821 [TBL] [Abstract][Full Text] [Related]
20. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Tilston EL; Collins CD; Mitchell GR; Princivalle J; Shaw LJ Environ Pollut; 2013 Feb; 173():38-46. PubMed ID: 23202280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]