BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30390601)

  • 1. Highly sensitive microbial biosensor based on recombinant Escherichia coli overexpressing catechol 2,3-dioxygenase for reliable detection of catechol.
    Liu Z; Zhang Y; Bian C; Xia T; Gao Y; Zhang X; Wang H; Ma H; Hu Y; Wang X
    Biosens Bioelectron; 2019 Feb; 126():51-58. PubMed ID: 30390601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous gold-based microbial biosensor for direct determination of sulfide.
    Liu Z; Ma H; Sun H; Gao R; Liu H; Wang X; Xu P; Xun L
    Biosens Bioelectron; 2017 Dec; 98():29-35. PubMed ID: 28646720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective determination of phenols and aromatic amines based on horseradish peroxidase-nanoporous gold co-catalytic strategy.
    Wu C; Liu Z; Sun H; Wang X; Xu P
    Biosens Bioelectron; 2016 May; 79():843-9. PubMed ID: 26780372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile catechol dioxygenases in Sphingobium scionense WP01
    Muthu M; Ophir Y; Macdonald LJ; Vaidya A; Lloyd-Jones G
    Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2293-2301. PubMed ID: 29959655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.
    Wu C; Liu X; Li Y; Du X; Wang X; Xu P
    Biosens Bioelectron; 2014 Mar; 53():26-30. PubMed ID: 24121205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection.
    Wu C; Sun H; Li Y; Liu X; Du X; Wang X; Xu P
    Biosens Bioelectron; 2015 Apr; 66():350-5. PubMed ID: 25463642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cloning and characterization of a chromosome-encoded catechol 2,3-dioxygenase gene from Pseudomonas aeruginosa ZD 4-3].
    Chen Y-; Liu H; Zhu L-; Jin Y-
    Mikrobiologiia; 2004; 73(6):802-9. PubMed ID: 15688939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and mutagenesis of catechol 2,3-dioxygenase gene from the gram-positive Planococcus sp. strain S5.
    Hupert-Kocurek K; Stawicka A; Wojcieszyńska D; Guzik U
    J Mol Microbiol Biotechnol; 2013; 23(6):381-90. PubMed ID: 23921803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase.
    Zhang Z; Liu J; Fan J; Wang Z; Li L
    Anal Chim Acta; 2018 Jun; 1009():65-72. PubMed ID: 29422133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination.
    Sun H; Liu Z; Wu C; Xu P; Wang X
    Sci Rep; 2016 Aug; 6():30905. PubMed ID: 27515253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive detection of low-concentration sulfide based on the synergistic effect of rGO, np-Au, and recombinant microbial cell.
    Bian C; Wang H; Zhang X; Xiao S; Liu Z; Wang X
    Biosens Bioelectron; 2020 Mar; 151():111985. PubMed ID: 31999591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery by metagenomics of a functional tandem repeat sequence that controls gene expression in bacteria.
    Suenaga H; Matsuzawa T; Sahara T
    FEMS Microbiol Ecol; 2022 Apr; 98(4):. PubMed ID: 35348701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of catechol-2, 3-dioxygenase for improving the enzyme characteristics.
    Wei J; Zhou Y; Xu T; Lu B
    Appl Biochem Biotechnol; 2010 Sep; 162(1):116-26. PubMed ID: 19688300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view.
    Zeng XH; Du H; Zhao HM; Xiang L; Feng NX; Li H; Li YW; Cai QY; Mo CH; Wong MH; He ZL
    J Hazard Mater; 2020 Jun; 391():122211. PubMed ID: 32036315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.
    He P; Li L; Liu J; Bai Y; Fang X
    FEMS Microbiol Lett; 2016 May; 363(10):. PubMed ID: 27190241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.
    Zhou Y; Tang L; Zeng G; Chen J; Cai Y; Zhang Y; Yang G; Liu Y; Zhang C; Tang W
    Biosens Bioelectron; 2014 Nov; 61():519-25. PubMed ID: 24951922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the gene encoding catechol 2,3-dioxygenase of Alcaligenes sp. KF711: overexpression, enzyme purification, and nucleotide sequencing.
    Moon J; Min KR; Kim CK; Min KH; Kim Y
    Arch Biochem Biophys; 1996 Aug; 332(2):248-54. PubMed ID: 8806732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701.
    Moon J; Kang E; Min KR; Kim CK; Min KH; Lee KS; Kim Y
    Biochem Biophys Res Commun; 1997 Sep; 238(2):430-5. PubMed ID: 9299526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes.
    Okuta A; Ohnishi K; Harayama S
    Gene; 1998 Jun; 212(2):221-8. PubMed ID: 9611265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.