These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 30390933)

  • 1. Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America.
    López MS; Müller GV; Sione WF
    Spat Spatiotemporal Epidemiol; 2018 Aug; 26():35-93. PubMed ID: 30390933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.
    Gubler DJ; Reiter P; Ebi KL; Yap W; Nasci R; Patz JA
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):223-33. PubMed ID: 11359689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change and vector-borne diseases: a regional analysis.
    Githeko AK; Lindsay SW; Confalonieri UE; Patz JA
    Bull World Health Organ; 2000; 78(9):1136-47. PubMed ID: 11019462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in Nepal--A Systematic Synthesis of Literature.
    Dhimal M; Ahrens B; Kuch U
    PLoS One; 2015; 10(6):e0129869. PubMed ID: 26086887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malaria vectors in South America: current and future scenarios.
    Laporta GZ; Linton YM; Wilkerson RC; Bergo ES; Nagaki SS; Sant'Ana DC; Sallum MA
    Parasit Vectors; 2015 Aug; 8():426. PubMed ID: 26283539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe.
    Bezirtzoglou C; Dekas K; Charvalos E
    Anaerobe; 2011 Dec; 17(6):337-40. PubMed ID: 21664978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deforestation: effects on vector-borne disease.
    Walsh JF; Molyneux DH; Birley MH
    Parasitology; 1993; 106 Suppl():S55-75. PubMed ID: 8488073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America.
    Purse BV; Masante D; Golding N; Pigott D; Day JC; Ibañez-Bernal S; Kolb M; Jones L
    PLoS One; 2017; 12(10):e0183583. PubMed ID: 29020041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Declining Prevalence of Disease Vectors Under Climate Change.
    Escobar LE; Romero-Alvarez D; Leon R; Lepe-Lopez MA; Craft ME; Borbor-Cordova MJ; Svenning JC
    Sci Rep; 2016 Dec; 6():39150. PubMed ID: 27982119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aedes aegypti (L.) in Latin American and Caribbean region: With growing evidence for vector adaptation to climate change?
    Chadee DD; Martinez R
    Acta Trop; 2016 Apr; 156():137-43. PubMed ID: 26796862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia.
    Servadio JL; Rosenthal SR; Carlson L; Bauer C
    J Infect Public Health; 2018; 11(4):566-571. PubMed ID: 29274851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of environmental data in descriptive and predictive models of vector-borne disease in North America.
    Kiryluk HD; Beard CB; Holcomb KM
    J Med Entomol; 2024 May; 61(3):595-602. PubMed ID: 38431876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia.
    Teurlai M; Menkès CE; Cavarero V; Degallier N; Descloux E; Grangeon JP; Guillaumot L; Libourel T; Lucio PS; Mathieu-Daudé F; Mangeas M
    PLoS Negl Trop Dis; 2015 Dec; 9(12):e0004211. PubMed ID: 26624008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.
    McIntyre S; Rangel EF; Ready PD; Carvalho BM
    Parasit Vectors; 2017 Mar; 10(1):157. PubMed ID: 28340594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence.
    Fouque F; Reeder JC
    Infect Dis Poverty; 2019 Jun; 8(1):51. PubMed ID: 31196187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vector-borne diseases and climate change: a European perspective.
    Semenza JC; Suk JE
    FEMS Microbiol Lett; 2018 Feb; 365(2):. PubMed ID: 29149298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate influence on dengue epidemics in Puerto Rico.
    Jury MR
    Int J Environ Health Res; 2008 Oct; 18(5):323-34. PubMed ID: 18821372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different.
    Ogden NH; Lindsay LR
    Trends Parasitol; 2016 Aug; 32(8):646-656. PubMed ID: 27260548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of climate change on vector-borne disease risk in the UK.
    Medlock JM; Leach SA
    Lancet Infect Dis; 2015 Jun; 15(6):721-30. PubMed ID: 25808458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate drivers of vector-borne diseases in Africa and their relevance to control programmes.
    Thomson MC; Muñoz ÁG; Cousin R; Shumake-Guillemot J
    Infect Dis Poverty; 2018 Aug; 7(1):81. PubMed ID: 30092816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.