BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30391707)

  • 1. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions.
    Zhang X; Ding K; Wang J; Li X; Zhao P
    Biomed Pharmacother; 2019 Jan; 109():39-46. PubMed ID: 30391707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoresistance in high-grade gliomas: relevance of adenosine signalling in stem-like cells of glioblastoma multiforme.
    Garrido W; Rocha JD; Jaramillo C; Fernandez K; Oyarzun C; San Martin R; Quezada C
    Curr Drug Targets; 2014; 15(10):931-42. PubMed ID: 25174341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier.
    Da Ros M; De Gregorio V; Iorio AL; Giunti L; Guidi M; de Martino M; Genitori L; Sardi I
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30248992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression.
    Chen W; Xu XK; Li JL; Kong KK; Li H; Chen C; He J; Wang F; Li P; Ge XS; Li FC
    Oncotarget; 2017 Apr; 8(14):22783-22799. PubMed ID: 28187000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytes, the rising stars of the glioblastoma microenvironment.
    Brandao M; Simon T; Critchley G; Giamas G
    Glia; 2019 May; 67(5):779-790. PubMed ID: 30240060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explicating the Pivotal Pathogenic, Diagnostic, and Therapeutic Biomarker Potentials of Myeloid-Derived Suppressor Cells in Glioblastoma.
    Richard SA
    Dis Markers; 2020; 2020():8844313. PubMed ID: 33204365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence.
    Auffinger B; Spencer D; Pytel P; Ahmed AU; Lesniak MS
    Expert Rev Neurother; 2015; 15(7):741-52. PubMed ID: 26027432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging therapeutic targets and agents for glioblastoma migrating cells.
    Di C; Mattox AK; Harward S; Adamson C
    Anticancer Agents Med Chem; 2010 Sep; 10(7):543-55. PubMed ID: 20950259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Microglial Functions for the Treatment of Glioblastoma.
    Dello Russo C; Lisi L; Tentori L; Navarra P; Graziani G; Combs CK
    Curr Cancer Drug Targets; 2017; 17(3):267-281. PubMed ID: 27528361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies.
    Stanković T; Ranđelović T; Dragoj M; Stojković Burić S; Fernández L; Ochoa I; Pérez-García VM; Pešić M
    Drug Resist Updat; 2021 Mar; 55():100753. PubMed ID: 33667959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment.
    van Tellingen O; Yetkin-Arik B; de Gooijer MC; Wesseling P; Wurdinger T; de Vries HE
    Drug Resist Updat; 2015 Mar; 19():1-12. PubMed ID: 25791797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BK channels blockage inhibits hypoxia-induced migration and chemoresistance to cisplatin in human glioblastoma cells.
    Rosa P; Catacuzzeno L; Sforna L; Mangino G; Carlomagno S; Mincione G; Petrozza V; Ragona G; Franciolini F; Calogero A
    J Cell Physiol; 2018 Sep; 233(9):6866-6877. PubMed ID: 29319175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics.
    Leite DM; Zvar Baskovic B; Civita P; Neto C; Gumbleton M; Pilkington GJ
    FASEB J; 2020 Jan; 34(1):1710-1727. PubMed ID: 31914660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide.
    Messaoudi K; Clavreul A; Lagarce F
    Drug Discov Today; 2015 Jul; 20(7):899-905. PubMed ID: 25744176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting.
    Persano L; Rampazzo E; Basso G; Viola G
    Biochem Pharmacol; 2013 Mar; 85(5):612-622. PubMed ID: 23063412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells.
    Song WS; Yang YP; Huang CS; Lu KH; Liu WH; Wu WW; Lee YY; Lo WL; Lee SD; Chen YW; Huang PI; Chen MT
    J Chin Med Assoc; 2016 Oct; 79(10):538-45. PubMed ID: 27530866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G-protein-coupled receptors as therapeutic targets for glioblastoma.
    Byrne KF; Pal A; Curtin JF; Stephens JC; Kinsella GK
    Drug Discov Today; 2021 Dec; 26(12):2858-2870. PubMed ID: 34271165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Concomitant radiotherapy with chemotherapy in patients with glioblastoma].
    Benouaich-Amiel A; Simon JM; Delattre JY
    Bull Cancer; 2005 Dec; 92(12):1065-72. PubMed ID: 16396752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolving strategies: future treatment of glioblastoma.
    Chamberlain M
    Expert Rev Neurother; 2011 Apr; 11(4):519-32. PubMed ID: 21469925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temozolomide-induced increase of tumorigenicity can be diminished by targeting of mitochondria in in vitro models of patient individual glioblastoma.
    William D; Walther M; Schneider B; Linnebacher M; Classen CF
    PLoS One; 2018; 13(1):e0191511. PubMed ID: 29352318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.