These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30391788)

  • 1. Volatilization of toxic elements from coal samples of Thar coal field, after burning at different temperature and their mobility from ash: Risk assessment.
    Kazi TG; Lashari AA; Ali J; Baig JA; Afridi HI
    Chemosphere; 2019 Feb; 217():35-41. PubMed ID: 30391788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic in coal of the Thar coalfield, Pakistan, and its behavior during combustion.
    Ali J; Kazi TG; Baig JA; Afridi HI; Arain MS; Brahman KD; Naeemullah ; Panhwar AH
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8559-66. PubMed ID: 25561265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of sulphur compounds on the volatile characteristics of heavy metals in fly ash from the MSW and sewage sludge co-combustion plant during the disposal process with higher temperature].
    Liu JY; Sun SY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3990-8. PubMed ID: 23323436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentially toxic elements in lignite and its combustion residues from a power plant.
    Ram LC; Masto RE; Srivastava NK; George J; Selvi VA; Das TB; Pal SK; Maity S; Mohanty D
    Environ Monit Assess; 2015 Jan; 187(1):4148. PubMed ID: 25446718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and volatility of several trace elements in pulverized coal boiler.
    Huang YJ; Jin BS; Zhong ZP; Xiao R; Tang ZY; Ren HF
    J Environ Sci (China); 2004; 16(2):242-6. PubMed ID: 15137647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion.
    Smolka-Danielowska D; Fiedor D
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25091-25097. PubMed ID: 29938326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.
    Wei Z; Wu G; Su R; Li C; Liang P
    Environ Toxicol Chem; 2011 Sep; 30(9):1997-2003. PubMed ID: 21713969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of the significance of mercury release from coal fly ash.
    Gustin MS; Ladwig K
    J Air Waste Manag Assoc; 2004 Mar; 54(3):320-30. PubMed ID: 15061613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms.
    Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H
    Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chlorination transformation and volatilization of heavy metals in fly ash from the incineration during the disposal process with higher temperature].
    Liu JY; Sun SY
    Huan Jing Ke Xue; 2012 Sep; 33(9):3279-87. PubMed ID: 23243893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.
    Richaud R; Lazaro MJ; Lachas H; Miller BB; Herod AA; Dugwell DR; Kandiyoti R
    Rapid Commun Mass Spectrom; 2000; 14(5):317-28. PubMed ID: 10700033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.
    Li XG; Lv Y; Ma BG; Jian SW; Tan HB
    Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.
    Komonweeraket K; Cetin B; Benson CH; Aydilek AH; Edil TB
    Waste Manag; 2015 Apr; 38():174-84. PubMed ID: 25555664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations.
    Suriyawong A; Magee R; Peebles K; Biswas P
    J Air Waste Manag Assoc; 2009 May; 59(5):560-7. PubMed ID: 19583156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of thermal desorption for the identification of mercury species in solids derived from coal utilization.
    Rumayor M; Diaz-Somoano M; Lopez-Anton MA; Martinez-Tarazona MR
    Chemosphere; 2015 Jan; 119():459-465. PubMed ID: 25102829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation and recovery of arsenic, germanium and tungsten from toxic coal ash from lignite by sequential vacuum distillation with disulphide.
    Wang Z; Sun J; Zhang L
    Environ Pollut; 2024 Jan; 340(Pt 2):122775. PubMed ID: 37884191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the leaching behavior of elements from coal combustion residues for better management.
    Kumar A; Samadder SR
    Environ Monit Assess; 2015 Jun; 187(6):370. PubMed ID: 26002341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.
    Saqib N; Bäckström M
    Waste Manag; 2014 Dec; 34(12):2505-19. PubMed ID: 25263218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation and mobility of volatile heavy metals (Cd, Pb, and Tl) in fly ashes.
    Świetlik R; Trojanowska M; Karbowska B; Zembrzuski W
    Environ Monit Assess; 2016 Nov; 188(11):637. PubMed ID: 27783345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier.
    Dai G; Zheng S; Wang X; Bai Y; Dong Y; Du J; Sun X; Tan H
    J Environ Manage; 2020 Oct; 271():111009. PubMed ID: 32778293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.