These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30391804)

  • 1. Measuring the areal density of nanomaterials by electron energy-loss spectroscopy.
    Tian M; Dyck O; Ge J; Duscher G
    Ultramicroscopy; 2019 Jan; 196():154-160. PubMed ID: 30391804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on the specimen thickness measurement using EELS and CBED methods.
    Heo YU
    Appl Microsc; 2020 May; 50(1):8. PubMed ID: 33580338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density measurement of thin layers by electron energy loss spectroscopy (EELS).
    Thomas J; Ramm J; Gemming T
    Micron; 2013 Jul; 50():57-61. PubMed ID: 23791912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxides.
    Basha A; Levi G; Amrani T; Li Y; Ankonina G; Shekhter P; Kornblum L; Goldfarb I; Kohn A
    Ultramicroscopy; 2022 Oct; 240():113570. PubMed ID: 35700667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Energy Electron Scattering in
    Hayashida M; Malac M
    Microsc Microanal; 2022 Mar; ():1-13. PubMed ID: 35343421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching ultimate nanometrology for AlOx thickness in magnetic tunnel junction by analytical electron microscopy and X-ray reflectometry.
    Song SA; Hirano T; Park JB; Kaji K; Kim KH; Terada S
    Microsc Microanal; 2005 Oct; 11(5):431-45. PubMed ID: 17481324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining FIB milling and conventional Argon ion milling techniques to prepare high-quality site-specific TEM samples for quantitative EELS analysis of oxygen in molten iron.
    Miyajima N; Holzapfel C; Asahara Y; Dubrovinsky L; Frost DJ; Rubie DC; Drechsler M; Niwa K; Ichihara M; Yagi T
    J Microsc; 2010 Jun; 238(3):200-9. PubMed ID: 20579258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness measurements with electron energy loss spectroscopy.
    Iakoubovskii K; Mitsuishi K; Nakayama Y; Furuya K
    Microsc Res Tech; 2008 Aug; 71(8):626-31. PubMed ID: 18454473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the aspect ratios of ZnO nanobelts.
    Berta Y; Ma C; Wang ZL
    Micron; 2002; 33(7-8):687-91. PubMed ID: 12475566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative STEM: A method for measuring temperature and thickness effects on thermal diffuse scattering using STEM/EELS, and for testing electron scattering models.
    Minson PS; Rivera F; Vanfleet R
    Ultramicroscopy; 2023 Apr; 246():113684. PubMed ID: 36689849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of absolute thickness and mean free path of thin foil specimen by zeta-factor method.
    Ohshima K; Kaneko K; Fujita T; Horita Z
    J Electron Microsc (Tokyo); 2004; 53(2):137-42. PubMed ID: 15180208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized FIB silicon samples suitable for lattice parameters measurements by convergent beam electron diffraction.
    Alexandre L; Rousseau K; Alfonso C; Saikaly W; Fares L; Grosjean C; Charaï A
    Micron; 2008; 39(3):294-301. PubMed ID: 17346978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass thickness determination by electron energy loss for quantitative X-ray microanalysis in biology.
    Leapman RD; Fiori CE; Swyt CR
    J Microsc; 1984 Mar; 133(Pt 3):239-53. PubMed ID: 6716460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local thickness measurement through scattering contrast and electron energy-loss spectroscopy.
    Zhang HR; Egerton RF; Malac M
    Micron; 2012 Jan; 43(1):8-15. PubMed ID: 21803591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel.
    Mitchell DR
    J Microsc; 2006 Nov; 224(Pt 2):187-96. PubMed ID: 17204066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique.
    Warot-Fonrose B; Houdellier F; Hÿtch MJ; Calmels L; Serin V; Snoeck E
    Ultramicroscopy; 2008 Apr; 108(5):393-8. PubMed ID: 17619085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thickness measurement of hydrated and dehydrated cryosections by EELS.
    Shi S; Sun S; Andrews SB; Leapman RD
    Microsc Res Tech; 1996 Feb; 33(3):241-50. PubMed ID: 8652882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thickness and Stacking Sequence Determination of Exfoliated Dichalcogenides (1T-TaS2, 2H-MoS2) Using Scanning Transmission Electron Microscopy.
    Hovden R; Liu P; Schnitzer N; Tsen AW; Liu Y; Lu W; Sun Y; Kourkoutis LF
    Microsc Microanal; 2018 Aug; 24(4):387-395. PubMed ID: 30175707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated CBED processing: sample thickness estimation based on analysis of zone-axis CBED pattern.
    Klinger M; Němec M; Polívka L; Gärtnerová V; Jäger A
    Ultramicroscopy; 2015 Mar; 150():88-95. PubMed ID: 25544679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.