These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30391841)

  • 41. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice.
    Takahashi R; Ishimaru Y; Shimo H; Ogo Y; Senoura T; Nishizawa NK; Nakanishi H
    Plant Cell Environ; 2012 Nov; 35(11):1948-57. PubMed ID: 22548273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: growth endpoints, metal bioaccumulation, and ultrastructural analysis.
    Ribeiro PG; Martins GC; Moreira CG; de Oliveira C; Andrade MLC; Sales TS; Chagas WFT; Labory CRG; de Carvalho TS; Guilherme LRG
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45513-45526. PubMed ID: 32794095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.
    Zhang RR; Liu Y; Xue WL; Chen RX; Du ST; Jin CW
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):25074-25083. PubMed ID: 27677996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes.
    Wu FB; Dong J; Qian QQ; Zhang GP
    Chemosphere; 2005 Sep; 60(10):1437-46. PubMed ID: 16054913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development.
    Sankaran RP; Ebbs SD
    Physiol Plant; 2008 Jan; 132(1):69-78. PubMed ID: 18251871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of zinc on apical uptake of cadmium in the gills and cadmium influx to the circulatory system in zebrafish (Danio rerio).
    Wicklund Glynn A
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Feb; 128(2):165-72. PubMed ID: 11239829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.
    Tang L; Yao A; Ming Yuan ; Tang Y; Liu J; Liu X; Qiu R
    Chemosphere; 2016 Dec; 164():190-200. PubMed ID: 27591370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Stoichiometry of multi-elements in the zinc-cadmium hyperaccumulator Thlaspi caerulescens grown hydroponically under different zinc concentrations determined by ICP-AES].
    Han WX; Xu YM; Du W; Tang AH; Jiang RF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2565-7. PubMed ID: 19950676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems.
    Woraharn S; Meeinkuirt W; Phusantisampan T; Avakul P
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):35157-35170. PubMed ID: 33666846
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance.
    Xiong YH; Yang XE; Ye ZQ; He ZL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2925-40. PubMed ID: 15533014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative Transcriptome Analysis between Low- and High-Cadmium-Accumulating Genotypes of Pakchoi (Brassica chinensis L.) in Response to Cadmium Stress.
    Zhou Q; Guo JJ; He CT; Shen C; Huang YY; Chen JX; Guo JH; Yuan JG; Yang ZY
    Environ Sci Technol; 2016 Jun; 50(12):6485-94. PubMed ID: 27228483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visible cellular distribution of cadmium and zinc in the hyperaccumulator Arabidopsis halleri ssp. gemmifera determined by 2-D X-ray fluorescence imaging using high-energy synchrotron radiation.
    Fukuda N; Kitajima N; Terada Y; Abe T; Nakai I; Hokura A
    Metallomics; 2020 Feb; 12(2):193-203. PubMed ID: 31845691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators.
    Guo D; Ali A; Ren C; Du J; Li R; Lahori AH; Xiao R; Zhang Z; Zhang Z
    Ecotoxicol Environ Saf; 2019 Jan; 167():396-403. PubMed ID: 30366273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants.
    Hussain A; Ali S; Rizwan M; Zia Ur Rehman M; Javed MR; Imran M; Chatha SAS; Nazir R
    Environ Pollut; 2018 Nov; 242(Pt B):1518-1526. PubMed ID: 30144725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathways of cadmium fluxes in the root of the hyperaccumulator Celosia argentea Linn.
    Jiang P; Zheng Y; Liu J; Yu G; Lin F
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44413-44421. PubMed ID: 35137315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide.
    Su N; Niu M; Liu Z; Wang L; Zhu Z; Zou J; Chen Y; Cui J
    Environ Pollut; 2021 Apr; 274():115882. PubMed ID: 33234366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system.
    Ding X; Jiang Y; Zhao H; Guo D; He L; Liu F; Zhou Q; Nandwani D; Hui D; Yu J
    PLoS One; 2018; 13(8):e0202090. PubMed ID: 30157185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba).
    Kusznierewicz B; Bączek-Kwinta R; Bartoszek A; Piekarska A; Huk A; Manikowska A; Antonkiewicz J; Namieśnik J; Konieczka P
    Environ Toxicol Chem; 2012 Nov; 31(11):2482-9. PubMed ID: 22886927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils.
    Grispen VM; Nelissen HJ; Verkleij JA
    Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity.
    Shi Z; Yang S; Han D; Zhou Z; Li X; Liu Y; Zhang B
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7638-7646. PubMed ID: 29285697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.