These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30391843)

  • 21. Refractory azo dye wastewater treatment by combined process of microbial electrolytic reactor and plant-microbial fuel cell.
    Liu S; Wang Z; Feng X; Pyo SH
    Environ Res; 2023 Jan; 216(Pt 2):114625. PubMed ID: 36279915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance evaluation of a photosynthetic microbial fuel cell (PMFC) using Chlamydomonas reinhardtii at cathode.
    Sharma A; Chhabra M
    Bioresour Technol; 2021 Oct; 338():125499. PubMed ID: 34260967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell.
    Bazdar E; Roshandel R; Yaghmaei S; Mardanpour MM
    Bioresour Technol; 2018 Aug; 261():350-360. PubMed ID: 29679853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm.
    Lin CC; Wei CH; Chen CI; Shieh CJ; Liu YC
    Bioresour Technol; 2013 May; 135():640-3. PubMed ID: 23186678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant microbial fuel cell: Opportunities, challenges, and prospects.
    Maddalwar S; Kumar Nayak K; Kumar M; Singh L
    Bioresour Technol; 2021 Dec; 341():125772. PubMed ID: 34411941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.
    Bhola V; Desikan R; Santosh SK; Subburamu K; Sanniyasi E; Bux F
    J Biosci Bioeng; 2011 Mar; 111(3):377-82. PubMed ID: 21185776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction and biofixation of carbon dioxide in palm oil mill effluent using developed microbial granules containing photosynthetic pigments.
    Najib MZM; Salmiati ; Ujang Z; Salim MR; Ibrahim Z; Muda K
    Bioresour Technol; 2016 Dec; 221():157-164. PubMed ID: 27639234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CO
    Cecchin M; Paloschi M; Busnardo G; Cazzaniga S; Cuine S; Li-Beisson Y; Wobbe L; Ballottari M
    Plant Cell Environ; 2021 Sep; 44(9):2987-3001. PubMed ID: 33931891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy from algae using microbial fuel cells.
    Velasquez-Orta SB; Curtis TP; Logan BE
    Biotechnol Bioeng; 2009 Aug; 103(6):1068-76. PubMed ID: 19418564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of organics and ammonium removal.
    Pei H; Yang Z; Nie C; Hou Q; Zhang L; Wang Y; Zhang S
    Bioresour Technol; 2018 May; 256():11-16. PubMed ID: 29427862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced CO
    You SK; Ko YJ; Shin SK; Hwang DH; Kang DH; Park HM; Han SO
    Bioresour Technol; 2020 Dec; 318():124072. PubMed ID: 32911368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ fluorescence and electrochemical monitoring of a photosynthetic microbial fuel cell.
    Inglesby AE; Yunus K; Fisher AC
    Phys Chem Chem Phys; 2013 May; 15(18):6903-11. PubMed ID: 23549224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris.
    Wang W; Zhou W; Liu J; Li Y; Zhang Y
    Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas and combustible biomass production.
    Sakarika M; Kornaros M
    Bioresour Technol; 2019 Feb; 273():237-243. PubMed ID: 30447625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosynthetic microbial fuel cells with positive light response.
    Zou Y; Pisciotta J; Billmyre RB; Baskakov IV
    Biotechnol Bioeng; 2009 Dec; 104(5):939-46. PubMed ID: 19575441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.
    Chang HX; Huang Y; Fu Q; Liao Q; Zhu X
    Bioresour Technol; 2016 Apr; 206():231-238. PubMed ID: 26866758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.