BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30391846)

  • 1. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study.
    Song C; Wei Y; Qiu Y; Qi Y; Li Y; Kitamura Y
    Bioresour Technol; 2019 Jan; 272():529-534. PubMed ID: 30391846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38.
    Song C; Wei Y; Sun J; Song Y; Li S; Kitamura Y
    Bioresour Technol; 2020 Jan; 296():122320. PubMed ID: 31678704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capabilities and mechanisms of microalgae on nutrients and florfenicol removing from marine aquaculture wastewater.
    Qian Z; Na L; Bao-Long W; Tao Z; Peng-Fei M; Wei-Xiao Z; Sraboni NZ; Zheng M; Ying-Qi Z; Liu Y
    J Environ Manage; 2022 Oct; 320():115673. PubMed ID: 35940008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Mechanism of Sulfadimethoxine Biodegradation by
    Li B; Wu D; Li Y; Shi Y; Wang C; Sun J; Song C
    Front Microbiol; 2022; 13():840562. PubMed ID: 35369425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui.
    Lai HT; Hou JH; Su CI; Chen CL
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):329-34. PubMed ID: 18439675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38.
    Li S; Zheng X; Chen Y; Song C; Lei Z; Zhang Z
    Bioresour Technol; 2020 Oct; 313():123743. PubMed ID: 32620368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025.
    Song C; Liu Z; Wang C; Li S; Kitamura Y
    Sci Total Environ; 2020 Jun; 723():138146. PubMed ID: 32222515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp.
    Ma Y; Lin S; Guo T; Guo C; Li Y; Hou Y; Gao Y; Dong R; Liu S
    Environ Res; 2024 Sep; 256():119225. PubMed ID: 38797461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity.
    Hu N; Xu Y; Sun C; Zhu L; Sun S; Zhao Y; Hu C
    Ecotoxicol Environ Saf; 2021 Jan; 207():111546. PubMed ID: 33254405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism.
    Li J; Min Z; Li W; Xu L; Han J; Li P
    Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of Chlorella sp. with livestock waste compost for lipid production.
    Zhu LD; Li ZH; Guo DB; Huang F; Nugroho Y; Xia K
    Bioresour Technol; 2017 Jan; 223():296-300. PubMed ID: 27729191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal and biodegradation of nonylphenol by different Chlorella species.
    Gao QT; Wong YS; Tam NF
    Mar Pollut Bull; 2011; 63(5-12):445-51. PubMed ID: 21507429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicological effects and removal of 17β-estradiol in chlorella algae.
    Huang B; Tang J; He H; Gu L; Pan X
    Ecotoxicol Environ Saf; 2019 Jun; 174():377-383. PubMed ID: 30849658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution.
    Wang L; Xue C; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2016 Apr; 205():264-8. PubMed ID: 26803904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal and metabolism of triclosan by three different microalgal species in aquatic environment.
    Wang S; Poon K; Cai Z
    J Hazard Mater; 2018 Jan; 342():643-650. PubMed ID: 28898861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.
    Kim S; Park JE; Cho YB; Hwang SJ
    Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp.
    Yan C; Zheng Z
    Bioresour Technol; 2013 Jul; 139():292-9. PubMed ID: 23665690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.