These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 30391851)

  • 21. Preparation and characterization of innovative cement mortar incorporating fatty acid/expanded graphite composite phase change material for thermal energy storage.
    Zhou D; Xiao S; Liu Y
    Sci Rep; 2024 Jul; 14(1):16523. PubMed ID: 39019991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and Research on Mechanical Properties of Eco-Friendly Geopolymer Grouting Cementitious Materials Based on Industrial Solid Wastes.
    Li Z; Xu Y; Wu C; Zhang W; Chen Y; Li Y
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wettability and Mechanical Properties of Red Mud-Al
    Chen Y; Li A; Jiang S
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage.
    Liu P; Gu X; Zhang Z; Rao J; Shi J; Wang B; Bian L
    ACS Omega; 2019 Sep; 4(12):14962-14969. PubMed ID: 31552337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recycling red mud from the production of aluminium as a red cement-based mortar.
    Yang X; Zhao J; Li H; Zhao P; Chen Q
    Waste Manag Res; 2017 May; 35(5):500-507. PubMed ID: 28142600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Adding Neutralized Red Mud on the Hydration Properties of Cement Paste.
    Kang S; Kang H; Lee B
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined stabilizers prepared from cellulose nanocrystals and styrene-maleic anhydride to microencapsulate phase change materials.
    Han S; Lyu S; Chen Z; Fu F; Wang S
    Carbohydr Polym; 2020 Apr; 234():115923. PubMed ID: 32070542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-polysaccharide based microencapsulated phase change material composites for thermal energy storage.
    Singh J; Vennapusa JR; Chattopadhyay S
    Carbohydr Polym; 2020 Feb; 229():115531. PubMed ID: 31826523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Unit Construction for Heat Storage by Using Biomass-Based Composite.
    Su J; Weng M; Lu X; Xu W; Lyu S; Liu Y; Min Y
    Front Chem; 2022; 10():835455. PubMed ID: 35198540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.
    Kong X; Zhong Y; Rong X; Min C; Qi C
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation, thermal storage properties and application of sodium acetate trihydrate/expanded graphite composite phase change materials.
    Wang KW; Yan T; Meng LC; Pan WG
    Dalton Trans; 2023 Oct; 52(40):14537-14548. PubMed ID: 37781877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.
    Fang G; Li H; Chen Z; Liu X
    J Hazard Mater; 2010 Sep; 181(1-3):1004-9. PubMed ID: 20554381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility study on grouting material prepared from red mud and metallurgical wastewater based on synergistic theory.
    Li S; Zhang J; Li Z; Liu C; Chen J
    J Hazard Mater; 2021 Apr; 407():124358. PubMed ID: 33144001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Form-stable phase change materials based on polyolefin elastomer and octadecylamine-functionalized graphene for thermal energy storage.
    Zhang H; Meng Y; Cao Y; Yao Y; Fan D; Yang T; Qian T
    Nanotechnology; 2020 Mar; 31(24):245402. PubMed ID: 32131062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanded vermiculite supported capric-palmitic acid composites for thermal energy storage.
    Bai R; Liu S; Han J; Wang M; Gao W; Wu D; Zhou M
    RSC Adv; 2023 Jun; 13(26):17516-17525. PubMed ID: 37304813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of self-glazing on reducing the radioactivity levels of red mud based ceramic materials.
    Qin S; Wu B
    J Hazard Mater; 2011 Dec; 198():269-74. PubMed ID: 22050932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy storage and key derives of octadecane thermal stability during phase change assembly with animal manure-derived biochar.
    Atinafu DG; Choi JY; Yun BY; Nam J; Kim HB; Kim S
    Environ Res; 2024 Jan; 240(Pt 1):117405. PubMed ID: 37838193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation.
    Jeon J; Park JH; Wi S; Yang S; Ok YS; Kim S
    Chemosphere; 2019 Dec; 236():124269. PubMed ID: 31319304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures.
    Sam MN; Caggiano A; Mankel C; Koenders E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications.
    Anagnostopoulos A; Navarro ME; Stefanidou M; Ding Y; Gaidajis G
    J Hazard Mater; 2021 Jul; 413():125407. PubMed ID: 33930958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.