These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 30392670)
1. A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS). Liao W; Lin Q; Xie S; He Y; Tian Y; Duan Y Anal Chim Acta; 2018 Dec; 1043():64-71. PubMed ID: 30392670 [TBL] [Abstract][Full Text] [Related]
2. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Zhou H; Yang D; Ivleva NP; Mircescu NE; Niessner R; Haisch C Anal Chem; 2014 Feb; 86(3):1525-33. PubMed ID: 24387044 [TBL] [Abstract][Full Text] [Related]
3. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. Chen L; Mungroo N; Daikuara L; Neethirajan S J Nanobiotechnology; 2015 Jun; 13():45. PubMed ID: 26108554 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Au@Ag core-shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy. Liao W; Lin Q; Xu Y; Yang E; Duan Y Nanoscale; 2019 Mar; 11(12):5346-5354. PubMed ID: 30848272 [TBL] [Abstract][Full Text] [Related]
5. Review on SERS of Bacteria. Mosier-Boss PA Biosensors (Basel); 2017 Nov; 7(4):. PubMed ID: 29137201 [TBL] [Abstract][Full Text] [Related]
6. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Fan C; Hu Z; Mustapha A; Lin M Appl Microbiol Biotechnol; 2011 Dec; 92(5):1053-61. PubMed ID: 22005743 [TBL] [Abstract][Full Text] [Related]
7. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Chu H; Huang Y; Zhao Y Appl Spectrosc; 2008 Aug; 62(8):922-31. PubMed ID: 18702867 [TBL] [Abstract][Full Text] [Related]
8. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Wu X; Huang YW; Park B; Tripp RA; Zhao Y Talanta; 2015 Jul; 139():96-103. PubMed ID: 25882413 [TBL] [Abstract][Full Text] [Related]
9. SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe. Wang Y; Li Q; Zhang R; Tang K; Ding C; Yu S Mikrochim Acta; 2020 Apr; 187(5):290. PubMed ID: 32342176 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Knauer M; Ivleva NP; Liu X; Niessner R; Haisch C Anal Chem; 2010 Apr; 82(7):2766-72. PubMed ID: 20196561 [TBL] [Abstract][Full Text] [Related]
11. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Kahraman M; Zamaleeva AI; Fakhrullin RF; Culha M Anal Bioanal Chem; 2009 Dec; 395(8):2559-67. PubMed ID: 19795108 [TBL] [Abstract][Full Text] [Related]
12. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). Guo H; Zhang Z; Xing B; Mukherjee A; Musante C; White JC; He L Environ Sci Technol; 2015 Apr; 49(7):4317-24. PubMed ID: 25775209 [TBL] [Abstract][Full Text] [Related]
13. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. Sundaram J; Park B; Kwon Y; Lawrence KC Int J Food Microbiol; 2013 Oct; 167(1):67-73. PubMed ID: 23806291 [TBL] [Abstract][Full Text] [Related]
14. On sample preparation for surface-enhanced raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Kahraman M; Keseroğlu K; Culha M Appl Spectrosc; 2011 May; 65(5):500-6. PubMed ID: 21513592 [TBL] [Abstract][Full Text] [Related]
15. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Mircescu NE; Zhou H; Leopold N; Chiş V; Ivleva NP; Niessner R; Wieser A; Haisch C Anal Bioanal Chem; 2014 May; 406(13):3051-8. PubMed ID: 24705957 [TBL] [Abstract][Full Text] [Related]
16. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis. Sivashanmugan K; Squire K; Tan A; Zhao Y; Kraai JA; Rorrer GL; Wang AX ACS Sens; 2019 Apr; 4(4):1109-1117. PubMed ID: 30907578 [TBL] [Abstract][Full Text] [Related]
17. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Cui L; Chen P; Chen S; Yuan Z; Yu C; Ren B; Zhang K Anal Chem; 2013 Jun; 85(11):5436-43. PubMed ID: 23656550 [TBL] [Abstract][Full Text] [Related]
18. Discrimination of urinary tract infection pathogens by means of their growth profiles using surface enhanced Raman scattering. Avci E; Kaya NS; Ucankus G; Culha M Anal Bioanal Chem; 2015 Nov; 407(27):8233-41. PubMed ID: 26297460 [TBL] [Abstract][Full Text] [Related]
19. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Fateixa S; Raposo M; Nogueira HIS; Trindade T Talanta; 2018 May; 182():558-566. PubMed ID: 29501193 [TBL] [Abstract][Full Text] [Related]
20. Selective SERS detecting of hydrophobic microorganisms by tricomponent nanohybrids of silver-silicate-platelet-surfactant. Ho JY; Liu TY; Wei JC; Wang JK; Wang YL; Lin JJ ACS Appl Mater Interfaces; 2014 Feb; 6(3):1541-9. PubMed ID: 24411013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]