These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30393099)

  • 1. Incorporating post translational modification information for enhancing the predictive performance of membrane transport proteins.
    Le NQK; Sandag GA; Ou YY
    Comput Biol Chem; 2018 Dec; 77():251-260. PubMed ID: 30393099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties.
    Chen SA; Ou YY; Lee TY; Gromiha MM
    Bioinformatics; 2011 Aug; 27(15):2062-7. PubMed ID: 21653515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of transporters using efficient radial basis function networks with position-specific scoring matrices and biochemical properties.
    Ou YY; Chen SA; Gromiha MM
    Proteins; 2010 May; 78(7):1789-97. PubMed ID: 20196081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.
    Mishra NK; Chang J; Zhao PX
    PLoS One; 2014; 9(6):e100278. PubMed ID: 24968309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding sites in transport proteins.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):501. PubMed ID: 28155651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Jul; 17():298. PubMed ID: 27475771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of membrane transporter protein types using K-nearest neighbor method derived from the similarity distance of total diversity measure.
    Zuo YC; Su WX; Zhang SH; Wang SS; Wu CY; Yang L; Li GP
    Mol Biosyst; 2015 Mar; 11(3):950-7. PubMed ID: 25607774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of efflux proteins using efficient radial basis function networks with position-specific scoring matrices and biochemical properties.
    Ou YY; Chen SA; Chang YM; Velmurugan D; Fukui K; Michael Gromiha M
    Proteins; 2013 Sep; 81(9):1634-43. PubMed ID: 23670815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMBETADISC-RBF: Discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles.
    Ou YY; Gromiha MM; Chen SA; Suwa M
    Comput Biol Chem; 2008 Jun; 32(3):227-31. PubMed ID: 18434251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.
    Ou YY; Chen SA; Wu SC
    PLoS One; 2013; 8(2):e46572. PubMed ID: 23405059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying substrate specificities of membrane transporters from Arabidopsis thaliana.
    Schaadt NS; Christoph J; Helms V
    J Chem Inf Model; 2010 Oct; 50(10):1899-905. PubMed ID: 20925375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved pore-forming regions in polypeptide-transporting proteins.
    Moslavac S; Mirus O; Bredemeier R; Soll J; von Haeseler A; Schleiff E
    FEBS J; 2005 Mar; 272(6):1367-78. PubMed ID: 15752354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction.
    Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepEfflux: a 2D convolutional neural network model for identifying families of efflux proteins in transporters.
    Taju SW; Nguyen TT; Le NQ; Kusuma RMI; Ou YY
    Bioinformatics; 2018 Sep; 34(18):3111-3117. PubMed ID: 29668844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A perspective on the structural studies of inner membrane electrochemical potential-driven transporters.
    Lemieux MJ
    Biochim Biophys Acta; 2008 Sep; 1778(9):1805-13. PubMed ID: 18252193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional classification of membrane transporters and channels based on filtered TM/non-TM amino acid composition.
    Schaadt NS; Helms V
    Biopolymers; 2012 Jul; 97(7):558-67. PubMed ID: 22492257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Transporter Classification Database (TCDB): recent advances.
    Saier MH; Reddy VS; Tsu BV; Ahmed MS; Li C; Moreno-Hagelsieb G
    Nucleic Acids Res; 2016 Jan; 44(D1):D372-9. PubMed ID: 26546518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational characterization of structural dynamics underlying function in active membrane transporters.
    Li J; Wen PC; Moradi M; Tajkhorshid E
    Curr Opin Struct Biol; 2015 Apr; 31():96-105. PubMed ID: 25913536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.