These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 30393282)
1. Experimental Study of Back Wall Dross and Surface Roughness in Fiber Laser Microcutting of 316L Miniature Tubes. García-López E; Medrano-Tellez AG; Ibarra-Medina JR; Siller HR; Rodriguez CA Micromachines (Basel); 2017 Dec; 9(1):. PubMed ID: 30393282 [TBL] [Abstract][Full Text] [Related]
2. Surface Finish and Back-Wall Dross Behavior during the Fiber Laser Cutting of AZ31 Magnesium Alloy. García-López E; Ibarra-Medina JR; Siller HR; Lammel-Lindemann JA; Rodriguez CA Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424418 [TBL] [Abstract][Full Text] [Related]
3. Factorial Analysis of Fiber Laser Fusion Cutting of AISI 304 Stainless Steel: Evaluation of Effects on Process Performance, Kerf Geometry and Cut Edge Roughness. Mahrle A; Borkmann M; Pfohl P Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069714 [TBL] [Abstract][Full Text] [Related]
4. The Advancement of Waterjet-Guided Laser Cutting System for Enhanced Surface Quality in AISI 1020 Steel Sheets. Paksoy M; Çandar H; Yılmaz NF Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063749 [TBL] [Abstract][Full Text] [Related]
5. Experimental Modeling, Statistical Analysis, and Optimization of the Laser-Cutting Process of Hardox 400 Steel. Safari M; Abtahi SM; Joudaki J Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930168 [TBL] [Abstract][Full Text] [Related]
6. FEM-Based Study of Precision Hard Turning of Stainless Steel 316L. Elkaseer A; Abdelaziz A; Saber M; Nassef A Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31398807 [TBL] [Abstract][Full Text] [Related]
7. Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting. Deng Y; Mao Z; Yang N; Niu X; Lu X Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244593 [TBL] [Abstract][Full Text] [Related]
8. Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L. Faas S; Bielke U; Weber R; Graf T Sci Rep; 2019 Feb; 9(1):1933. PubMed ID: 30760756 [TBL] [Abstract][Full Text] [Related]
9. The Influence of the Processing Parameters on the Laser-Ablation of Stainless Steel and Brass during the Engraving by Nanosecond Fiber Laser. Hribar L; Gregorčič P; Senegačnik M; Jezeršek M Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055250 [TBL] [Abstract][Full Text] [Related]
10. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser. García S; Trueba A; Vega LM; Madariaga E Biofouling; 2016 Nov; 32(10):1185-1193. PubMed ID: 27744709 [TBL] [Abstract][Full Text] [Related]
11. Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel. Liu J; Li C; Yang H; Liu J; Wang J; Deng L; Fang L; Yang C Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542621 [TBL] [Abstract][Full Text] [Related]
12. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Obeidi MA; McCarthy E; O'Connell B; Ul Ahad I; Brabazon D Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917513 [TBL] [Abstract][Full Text] [Related]
13. State-Of-The-Art and Trends in CO Mushtaq RT; Wang Y; Rehman M; Khan AM; Mia M Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878119 [TBL] [Abstract][Full Text] [Related]
14. A Comparative Study on the Structure and Quality of SLM and Cast AISI 316L Samples Subjected to WEDM Processing. Machno M; Franczyk E; Bogucki R; Matras A; Zębala W Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160647 [TBL] [Abstract][Full Text] [Related]
16. Improving the Surface Integrity of 316L Steel in the Context of Bioimplant Applications. Szwajka K; Zielińska-Szwajka J; Trzepieciński T Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176341 [TBL] [Abstract][Full Text] [Related]
17. Structural and Micromechanical Properties of Nd:YAG Laser Marking Stainless Steel (AISI 304 and AISI 316). Dywel P; Szczesny R; Domanowski P; Skowronski L Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397117 [TBL] [Abstract][Full Text] [Related]
18. Experimental Investigation of Surface Roughness and Material Removal Rate in Wire EDM of Stainless Steel 304. Naeim N; AbouEleaz MA; Elkaseer A Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770030 [TBL] [Abstract][Full Text] [Related]
19. Evolution of Surface Topography and Microstructure in Laser Polishing of Cold Work Steel 1.2379 (AISI D2) Using Quadratic, Top-Hat Shaped Intensity Distributions. Temmler A; Cortina M; Ross I; Küpper ME; Rittinghaus SK Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160715 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents. Gökhan Demir A; Previtali B Biointerphases; 2014 Jun; 9(2):029004. PubMed ID: 24985208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]