These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30393293)

  • 1. Haptic-Based Manipulation Scheme of Magnetic Nanoparticles in a Multi-Branch Blood Vessel for Targeted Drug Delivery.
    Hamdipoor V; Afzal MR; Le TA; Yoon J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study.
    Tahir A; Iqbal H; Usman M; Ghaffar A; Hafeez A
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):531-539. PubMed ID: 35041132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic virtual fixture for robotic cardiac catheter navigation.
    Park JW; Choi J; Park Y; Sun K
    Artif Organs; 2011 Nov; 35(11):1127-31. PubMed ID: 22023171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.
    Le TA; Zhang X; Hoshiar AK; Yoon J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood-Brain Barrier.
    Hoshiar AK; Le TA; Amin FU; Kim MO; Yoon J
    Nanomaterials (Basel); 2017 Dec; 8(1):. PubMed ID: 29271927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic guided virtual reality simulation for targeted drug delivery using nano-containers manipulation.
    Hassan S; Shah M; Yoon SC; Ullah I; Kim MO; Yoon J
    J Biomed Nanotechnol; 2013 Jul; 9(7):1190-4. PubMed ID: 23909133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Shared Control in Tele-Manipulation: Effects of Inaccuracies in Guidance on Task Execution.
    van Oosterhout J; Wildenbeest JG; Boessenkool H; Heemskerk CJ; de Baar MR; van der Helm FC; Abbink DA
    IEEE Trans Haptics; 2015; 8(2):164-75. PubMed ID: 25850094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction.
    Chen D; Song A; Tian L; Yu Y; Zhu L
    IEEE Trans Haptics; 2018; 11(4):555-567. PubMed ID: 29993931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Efficiency of Six-DoF Haptic Rendering-Based Virtual Assembly Training.
    Zheng M; Zhao D; Barbic J
    IEEE Trans Haptics; 2021; 14(1):212-224. PubMed ID: 32746380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proxy Importance Based Haptic Retargeting With Multiple Props in VR.
    Liu Z; Wu J; Wang L; Li X; Im SK
    IEEE Trans Vis Comput Graph; 2024 Apr; PP():. PubMed ID: 38652614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Task-Dependent Efficacy of Shared-Control Haptic Guidance Paradigms.
    Powell D; O'Malley MK
    IEEE Trans Haptics; 2012; 5(3):208-19. PubMed ID: 26964107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Haptic Feedback Scheme to Accurately Position a Virtual Wrist Prosthesis Using a Three-Node Tactor Array.
    Erwin A; Sup FC
    PLoS One; 2015; 10(8):e0134095. PubMed ID: 26263015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized electromagnetic actuation method for aggregated nanoparticles steering.
    Hoshiar AK; Tuan-Anh Le ; Amin FU; Myeong Ok Kim ; Jungwon Yoon
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():885-888. PubMed ID: 29060014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidance of Magnetic Nanocontainers for Treating Alzheimer's Disease Using an Electromagnetic, Targeted Drug-Delivery Actuator.
    Do TD; Ul Amin F; Noh Y; Kim MO; Yoon J
    J Biomed Nanotechnol; 2016 Mar; 12(3):569-74. PubMed ID: 27280254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.