These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30393295)

  • 1. A Wireless Implant for Gastrointestinal Motility Disorders.
    Lo YK; Wang PM; Dubrovsky G; Wu MD; Chan M; Dunn JCY; Liu W
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wireless Implantable System for Facilitating Gastrointestinal Motility.
    Wang PM; Dubrovsky G; Dunn JCY; Lo YK; Liu W
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31395845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Closed-Loop Neuromodulation: A Wireless Miniaturized Neural Implant SoC.
    Liu W; Wang PM; Lo YK
    Proc SPIE Int Soc Opt Eng; 2017 Apr; 10194():. PubMed ID: 30410205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Integrated Wireless SoC for Motor Function Recovery After Spinal Cord Injury.
    Lo YK; Kuan YC; Culaclii S; Kim B; Wang PM; Chang CW; Massachi JA; Zhu M; Chen K; Gad P; Edgerton VR; Liu W
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):497-509. PubMed ID: 28489550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
    Ahnood A; Cheriton R; Bruneau A; Belcourt JA; Ndabakuranye JP; Lemaire W; Hilkes R; Fontaine R; Cook JPD; Hinzer K; Prawer S
    Adv Biosyst; 2020 Nov; 4(11):e2000055. PubMed ID: 33084251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wireless Platform to Support Pre-Clinical Trial of Neural Implant for Spinal Cord Injury.
    Massachi J; Lo YK; Wang PM; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5487-5490. PubMed ID: 30441579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC; Lo YK; Kim Y; Chang MC; Liu W
    IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless and inductively powered implant for measuring electrocardiogram.
    Riistama J; Väisänen J; Heinisuo S; Harjunpää H; Arra S; Kokko K; Mäntylä M; Kaihilahti J; Heino P; Kellomäki M; Vainio O; Vanhala J; Lekkala J; Hyttinen J
    Med Biol Eng Comput; 2007 Dec; 45(12):1163-74. PubMed ID: 17929070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical therapies for gastrointestinal motility disorders.
    Chen JD; Yin J; Wei W
    Expert Rev Gastroenterol Hepatol; 2017 May; 11(5):407-418. PubMed ID: 28277856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Totally Implantable Wireless Ultrasonic Doppler Blood Flowmeters: Toward Accurate Miniaturized Chronic Monitors.
    Rothfuss MA; Unadkat JV; Gimbel ML; Mickle MH; Sejdić E
    Ultrasound Med Biol; 2017 Mar; 43(3):561-578. PubMed ID: 28038789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Inductively Powered Implantable System to Study the Gastrointestinal Electrophysiology in Freely Behaving Rodents.
    Berry DT; Choi J; Dexheimer CA; Verhaalen MA; Javan-Khoshkholgh A
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless Power Transfer and Telemetry for Implantable Bioelectronics.
    Yoo S; Lee J; Joo H; Sunwoo SH; Kim S; Kim DH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100614. PubMed ID: 34075721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a highly-scalable wireless implantable system-on-a-chip for gastric electrophysiology.
    Ibrahim A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2689-92. PubMed ID: 26736846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform Stimulation Protocols.
    Culaclii S; Wang PM; Taccola G; Yang W; Bailey B; Chen YP; Lo YK; Liu W
    Front Neurosci; 2021; 15():697731. PubMed ID: 34393710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical stimulation of gut motility guided by an in silico model.
    Barth BB; Henriquez CS; Grill WM; Shen X
    J Neural Eng; 2017 Dec; 14(6):066010. PubMed ID: 28816177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.
    Shon A; Chu JU; Jung J; Kim H; Youn I
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29267230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexagonal Stimulation Digital Controller Design and Verification for Wireless Subretinal Implant Device.
    Abbasi W; Choi H; Kim J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational motility models of neurogastroenterology and neuromodulation.
    Barth BB; Shen X
    Brain Res; 2018 Aug; 1693(Pt B):174-179. PubMed ID: 29903620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.