BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30393650)

  • 1. The Surface Coating of Commercial LiFePO
    Xu X; Qi C; Hao Z; Wang H; Jiu J; Liu J; Yan H; Suganuma K
    Nanomicro Lett; 2018; 10(1):1. PubMed ID: 30393650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of LiFePO
    Huang CY; Kuo TR; Yougbaré S; Lin LY
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1457-1465. PubMed ID: 34598027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Modification of the LiFePO
    Tron A; Jo YN; Oh SH; Park YD; Mun J
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Deposition of the LiFePO
    Tolganbek N; Zhalgas N; Kadyrov Y; Umirov N; Bakenov Z; Mentbayeva A
    ACS Omega; 2023 Feb; 8(8):8045-8051. PubMed ID: 36872969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries.
    Duan W; Husain M; Li Y; Lashari NUR; Yang Y; Ma C; Zhao Y; Li X
    RSC Adv; 2023 Aug; 13(36):25327-25333. PubMed ID: 37622017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Electrochemical Performance of LiFePO
    Yi D; Cui X; Li N; Zhang L; Yang D
    ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Graphene Oxide Coating LiFePO
    Zhang Q; Zhou Y; Tong Y; Chi Y; Liu R; Dai C; Li Z; Cui Z; Liang Y; Tan Y
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Low-Temperature Carbonization Capping of LiFePO
    Guo F; Huang X; Li Y; Zhang S; He X; Liu J; Yu Z; Li F; Liu B
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.
    Zhang J; Nie N; Liu Y; Wang J; Yu F; Gu J; Li W
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20134-43. PubMed ID: 26305802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose sulfate lithium as a conductive binder for LiFePO
    Su X; Fang H; Yang H; Zou F; Li G; Wang L; Liao H; Guan W; Hu X
    Carbohydr Polym; 2023 Aug; 313():120848. PubMed ID: 37182948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Heteroatom Doping on Electrochemical Properties of Olivine LiFePO
    Jiang X; Xin Y; He B; Zhang F; Tian H
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of a carbon supported lithium iron phosphate nanocomposite cathode material from metal-organic framework for lithium-ion batteries.
    Yu L; Zeng H; Jia R; Zhang R; Xu B
    J Colloid Interface Sci; 2024 Oct; 672():564-573. PubMed ID: 38852357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electrochemical Performance of LiFePO
    Chen X; Li Y; Wang J
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel carbon-coating strategy for producing core-shell structured carbon coated LiFePO
    Pratheeksha PM; Mohan EH; Sarada BV; Ramakrishna M; Hembram K; Srinivas PV; Daniel PJ; Rao TN; Anandan S
    Phys Chem Chem Phys; 2016 Dec; 19(1):175-188. PubMed ID: 27901145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally assisted conversion of biowaste into environment-friendly energy storage materials for lithium-ion batteries.
    Ho CW; Shaji N; Kim HK; Park JW; Nanthagopal M; Lee CW
    Chemosphere; 2022 Jan; 286(Pt 1):131654. PubMed ID: 34325260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformal Coating Strategy Comprising N-doped Carbon and Conventional Graphene for Achieving Ultrahigh Power and Cyclability of LiFePO4.
    Zhang K; Lee JT; Li P; Kang B; Kim JH; Yi GR; Park JH
    Nano Lett; 2015 Oct; 15(10):6756-63. PubMed ID: 26389552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.
    Wang B; Liu A; Abdulla WA; Wang D; Zhao XS
    Nanoscale; 2015 May; 7(19):8819-28. PubMed ID: 25908535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.