These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30393650)

  • 21. Cobalt-based zeolitic imidazolate frameworks modified separator as efficient polysulfide adsorbent for high performance lithium-sulfur batteries.
    Wang J; Li J
    J Colloid Interface Sci; 2021 Feb; 584():354-359. PubMed ID: 33080497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and modification mechanism of vanadium oxide coated LiFePO
    Geng J; Zou Z; Wang T; Zhang S; Ling W; Peng X; Liang F
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37527643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.
    Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.
    Tian R; Liu H; Jiang Y; Chen J; Tan X; Liu G; Zhang L; Gu X; Guo Y; Wang H; Sun L; Chu W
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11377-86. PubMed ID: 25970716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LiFePO₄-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene.
    Fu Y; Wei Q; Zhang G; Zhong Y; Moghimian N; Tong X; Sun S
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass-Derived Carbon Utilization for Electrochemical Energy Enhancement in Lithium-Ion Batteries.
    Jeong BJ; Jiang F; Sung JY; Jung SP; Oh DW; Gnanamuthu RM; Vediappan K; Lee CW
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface Modification of Ni-Rich LiNi
    Becker D; Börner M; Nölle R; Diehl M; Klein S; Rodehorst U; Schmuch R; Winter M; Placke T
    ACS Appl Mater Interfaces; 2019 May; 11(20):18404-18414. PubMed ID: 31046233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating.
    Aboonasr Shiraz MH; Rehl E; Kazemian H; Liu J
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved Electrochemical Performance of LiFePO
    Wang P; Zhang G; Li Z; Sheng W; Zhang Y; Gu J; Zheng X; Cao F
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26908-26915. PubMed ID: 27661261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant-Mediated and Morphology-Controlled Nanostructured LiFePO
    Khan S; Raj RP; George L; Kannangara GSK; Milev A; Varadaraju UV; Selvam P
    ChemistryOpen; 2020 Jan; 9(1):23-31. PubMed ID: 31921542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.
    Wang H; Yang C; Liu SX
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6880-4. PubMed ID: 25924344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries.
    Wu F; Zhang X; Zhao T; Li L; Xie M; Chen R
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3773-81. PubMed ID: 25629768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sucrose-assisted loading of LiFePO4 nanoparticles on graphene for high-performance lithium-ion battery cathodes.
    Wu Y; Wen Z; Feng H; Li J
    Chemistry; 2013 Apr; 19(18):5631-6. PubMed ID: 23468054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enabling high-performance lithium iron phosphate cathodes through an interconnected carbon network for practical and high-energy lithium-ion batteries.
    Li B; Xiao J; Zhu X; Wu Z; Zhang X; Han Y; Niu J; Wang F
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):942-948. PubMed ID: 37774657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery.
    Qiu L; Shao Z; Yang M; Wang W; Wang F; Xie L; Lv S; Zhang Y
    Carbohydr Polym; 2013 Jul; 96(1):240-5. PubMed ID: 23688476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Safety, high-performing and effects of the N/P ratio of a solid lithium ion battery using PEGDME based polymer electrolytes.
    Jeon I; Hong WG; Yoon S; Choi Y; Kim HJ; Kim JP
    Heliyon; 2023 Feb; 9(2):e13292. PubMed ID: 36816273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer-Templated LiFePO
    Fischer MG; Hua X; Wilts BD; Castillo-Martínez E; Steiner U
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1646-1653. PubMed ID: 29266921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a Self-Charging Lithium-Ion Battery Using Perovskite Solar Cells.
    Kim Y; Seo H; Kim E; Kim J; Seo I
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO
    Tang D; Ji G; Wang J; Liang Z; Chen W; Ji H; Ma J; Liu S; Zhuang Z; Zhou G
    Adv Mater; 2024 Feb; 36(5):e2309722. PubMed ID: 38010273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.