These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30393651)

  • 1. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction.
    Yin X; Yang J; Xiao F; Yang Y; Shen HB
    Nanomicro Lett; 2018; 10(1):2. PubMed ID: 30393651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain.
    Yang J; Shen HB
    Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling.
    Yang J; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2013 Oct; 29(20):2579-87. PubMed ID: 23946502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MemBrain: improving the accuracy of predicting transmembrane helices.
    Shen H; Chou JJ
    PLoS One; 2008 Jun; 3(6):e2399. PubMed ID: 18545655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOMPNN: an efficient non-parametric model for predicting transmembrane helices.
    Yu DJ; Shen HB; Yang JY
    Amino Acids; 2012 Jun; 42(6):2195-205. PubMed ID: 21695537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SOMRuler: a novel interpretable transmembrane helices predictor.
    Yu D; Shen H; Yang J
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):121-9. PubMed ID: 21742571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices.
    Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL
    BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal-3L 2.0: A Hierarchical Mixture Model for Enhancing Protein Signal Peptide Prediction by Incorporating Residue-Domain Cross-Level Features.
    Zhang YZ; Shen HB
    J Chem Inf Model; 2017 Apr; 57(4):988-999. PubMed ID: 28298081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.
    Yu D; Wu X; Shen H; Yang J; Tang Z; Qi Y; Yang J
    IEEE Trans Nanobioscience; 2012 Dec; 11(4):375-85. PubMed ID: 22875262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MutTMPredictor: Robust and accurate cascade XGBoost classifier for prediction of mutations in transmembrane proteins.
    Ge F; Zhu YH; Xu J; Muhammad A; Song J; Yu DJ
    Comput Struct Biotechnol J; 2021; 19():6400-6416. PubMed ID: 34938415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of buried helices in multispan alpha helical membrane proteins.
    Adamian L; Liang J
    Proteins; 2006 Apr; 63(1):1-5. PubMed ID: 16419070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins.
    Li B; Mendenhall J; Nguyen ED; Weiner BE; Fischer AW; Meiler J
    J Chem Inf Model; 2016 Feb; 56(2):423-34. PubMed ID: 26804342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach.
    Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J
    PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.