These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30393651)

  • 21. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach.
    Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J
    PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization.
    Reza MS; Zhang H; Hossain MT; Jin L; Feng S; Wei Y
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34209399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving accuracy of protein contact prediction using balanced network deconvolution.
    Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB
    Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enabling QTY Server for Designing Water-Soluble α-Helical Transmembrane Proteins.
    Tao F; Tang H; Zhang S; Li M; Xu P
    mBio; 2022 Feb; 13(1):e0360421. PubMed ID: 35038913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.
    Yang J; He BJ; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2015 Dec; 31(23):3773-81. PubMed ID: 26254435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data.
    Xia CQ; Pan X; Shen HB
    Bioinformatics; 2020 May; 36(10):3018-3027. PubMed ID: 32091580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PredCSF: an integrated feature-based approach for predicting conotoxin superfamily.
    Fan YX; Song J; Shen HB; Kong X
    Protein Pept Lett; 2011 Mar; 18(3):261-7. PubMed ID: 20955172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction.
    Pan X; Fan YX; Yan J; Shen HB
    BMC Genomics; 2016 Aug; 17():582. PubMed ID: 27506469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and prediction of helix-helix interactions in membrane channels and transporters.
    Hildebrand PW; Lorenzen S; Goede A; Preissner R
    Proteins; 2006 Jul; 64(1):253-62. PubMed ID: 16555307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.
    Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA
    Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins.
    Heffernan R; Dehzangi A; Lyons J; Paliwal K; Sharma A; Wang J; Sattar A; Zhou Y; Yang Y
    Bioinformatics; 2016 Mar; 32(6):843-9. PubMed ID: 26568622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane helices in "classical" nuclear reproductive steroid receptors: a perspective.
    Morrill GA; Kostellow AB; Gupta RK
    Nucl Recept Signal; 2015; 13():e003. PubMed ID: 26430393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins.
    Randall A; Cheng J; Sweredoski M; Baldi P
    Bioinformatics; 2008 Feb; 24(4):513-20. PubMed ID: 18006547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method.
    Zhou H; Zhou Y
    Protein Sci; 2003 Jul; 12(7):1547-55. PubMed ID: 12824500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SSCpred: Single-Sequence-Based Protein Contact Prediction Using Deep Fully Convolutional Network.
    Chen MC; Li Y; Zhu YH; Ge F; Yu DJ
    J Chem Inf Model; 2020 Jun; 60(6):3295-3303. PubMed ID: 32338512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BindWeb: A web server for ligand binding residue and pocket prediction from protein structures.
    Xia Y; Xia C; Pan X; Shen HB
    Protein Sci; 2022 Dec; 31(12):e4462. PubMed ID: 36190332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.