These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30393671)

  • 1. CuCr
    Liu J; Zhao Y; Li X; Wang C; Zeng Y; Yue G; Chen Q
    Nanomicro Lett; 2018; 10(2):22. PubMed ID: 30393671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Loading Nickel Cobaltate Nanoparticles Anchored on Three-Dimensional N-Doped Graphene as an Efficient Bifunctional Catalyst for Lithium-Oxygen Batteries.
    Gong H; Xue H; Wang T; Guo H; Fan X; Song L; Xia W; He J
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18060-8. PubMed ID: 27353228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Electrochemical Properties of MoS₂/rGO/S Composite as a Cathode Material for Lithium-Sulfur Batteries.
    Reddy BRS; Premasudha M; Lee YJ; Ahn HJ; Reddy NGS; Ahn JH; Cho KK
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7087-7091. PubMed ID: 32604562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.
    Wang Y; Huang ZX; Shi Y; Wong JI; Ding M; Yang HY
    Sci Rep; 2015 Mar; 5():9164. PubMed ID: 25776280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Electrochemical performance at high temperature of Cobalt Oxide/Reduced Graphene Oxide Nanocomposites and its application in lithium-ion batteries.
    Mussa Y; Ahmed F; Abuhimd H; Arsalan M; Alsharaeh E
    Sci Rep; 2019 Jan; 9(1):44. PubMed ID: 30631108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous perovskite CaMnO
    Biniazi S; Asgharzadeh H; Ahadzadeh I; Aydın Ö; Farsak M
    Dalton Trans; 2022 Dec; 51(47):18284-18295. PubMed ID: 36412143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Sulfur/Ethylenediamine-Functionalized Reduced Graphene Oxide Composite as Cathode Material for High-performance Lithium-Sulfur Batteries.
    Chen Z; Sun Z; Zhang Y; Tan T; Tian Y; Chen Z
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29734767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Preparation of CuCo
    Zhang Q; Hu Y; Wang J; Dai Y; Pan F
    Chemistry; 2021 Sep; 27(54):13568-13574. PubMed ID: 33843077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries.
    Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect.
    Zhang Z; Du Y; Li H
    Nanotechnology; 2020 Feb; 31(9):095402. PubMed ID: 31715593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LiMnO
    Tian Y; Qiu Y; Liu Z; Wei X; Cao H
    Nanotechnology; 2021 Jan; 32(1):015402. PubMed ID: 33043900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries.
    Hu X; Zhu Z; Cheng F; Tao Z; Chen J
    Nanoscale; 2015 Jul; 7(28):11833-40. PubMed ID: 26119364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries.
    Oh D; Qi J; Lu YC; Zhang Y; Shao-Horn Y; Belcher AM
    Nat Commun; 2013; 4():2756. PubMed ID: 24220635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.
    Xu X; Ji S; Gu M; Liu J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two dimensional (2D) reduced graphene oxide (RGO)/hexagonal boron nitride (h-BN) based nanocomposites as anodes for high temperature rechargeable lithium-ion batteries.
    Mussa Y; Ahmed F; Arsalan M; Alsharaeh E
    Sci Rep; 2020 Feb; 10(1):1882. PubMed ID: 32024851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.