These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30393694)

  • 21. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays.
    Ling Y; Dai Y; Zhou J
    J Colloid Interface Sci; 2020 Oct; 578():326-337. PubMed ID: 32531562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced photoelectrochemical activity of Co-doped β-In
    Pulipaka S; Koushik AKS; Deepa M; Meduri P
    RSC Adv; 2019 Jan; 9(3):1335-1340. PubMed ID: 35518026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metformin-Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Chatterjee S; Bhanja P; Ghosh D; Kumar P; Kanti Das S; Dalapati S; Bhaumik A
    ChemSusChem; 2021 Jan; 14(1):408-416. PubMed ID: 33052003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Earth-abundant oxygen evolution catalysts coupled onto ZnO nanowire arrays for efficient photoelectrochemical water cleavage.
    Jiang C; Moniz SJ; Khraisheh M; Tang J
    Chemistry; 2014 Sep; 20(40):12954-61. PubMed ID: 25156820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of Al-ZnO/CdS photoanodes modified with distinctive alumina passivation layer for improvement of photoelectrochemical efficiency and stability.
    Wang R; Li X; Wang L; Zhao X; Yang G; Li A; Wu C; Shen Q; Zhou Y; Zou Z
    Nanoscale; 2018 Nov; 10(41):19621-19627. PubMed ID: 30325386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ growth of Fe
    Lin H; Long X; An Y; Yang S
    J Chem Phys; 2020 Jun; 152(21):214704. PubMed ID: 32505145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of inorganic-organic 2D/2D WO₃/g-C₃N₄ nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater.
    Li Y; Wei X; Yan X; Cai J; Zhou A; Yang M; Liu K
    Phys Chem Chem Phys; 2016 Apr; 18(15):10255-61. PubMed ID: 27022001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial engineering of 1D/2D heterostructured photoanode for efficient photoelectrochemical water splitting.
    Wang Z; Qin Y; Wu X; He K; Li X; Wang J
    Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 35977454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Facile Self-assembly Synthesis of Hexagonal ZnO Nanosheet Films and Their Photoelectrochemical Properties.
    Zhang B; Wang F; Zhu C; Li Q; Song J; Zheng M; Ma L; Shen W
    Nanomicro Lett; 2016; 8(2):137-142. PubMed ID: 30460273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting.
    Hassan MA; Johar MA; Waseem A; Bagal IV; Ha JS; Ryu SW
    Opt Express; 2019 Feb; 27(4):A184-A196. PubMed ID: 30876134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilic polypyrrole and g-C
    Xie X; Wang R; Chen J; Ma Y; Li Z; Cui Q; Shi Z; Xu C
    Dalton Trans; 2022 Dec; 51(47):18109-18117. PubMed ID: 36377791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting.
    Chen Y; Li A; Yue X; Wang LN; Huang ZH; Kang F; Volinsky AA
    Nanoscale; 2016 Jul; 8(27):13228-35. PubMed ID: 26926569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid Surface Reconstruction of In
    Jeong YJ; Tan R; Nam S; Lee JH; Kim SK; Lee TG; Shin SS; Zheng X; Cho IS
    Adv Mater; 2024 May; ():e2403164. PubMed ID: 38720548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All-Solution-Processed WO
    Lee BR; Lee MG; Park H; Lee TH; Lee SA; Bhat SSM; Kim C; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20004-20012. PubMed ID: 31083922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes.
    Galán-González A; Sivan AK; Hernández-Ferrer J; Bowen L; Di Mario L; Martelli F; Benito AM; Maser WK; Chaudhry MU; Gallant A; Zeze DA; Atkinson D
    ACS Appl Nano Mater; 2020 Aug; 3(8):7781-7788. PubMed ID: 32954224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications.
    Nandanapalli KR; Mudusu D; Yu JS; Lee S
    J Colloid Interface Sci; 2020 Jan; 558():9-20. PubMed ID: 31580955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.