These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30393694)

  • 41. Architecting a Double Charge-Transfer Dynamics In
    Baral B; Mansingh S; Reddy KH; Bariki R; Parida K
    ACS Omega; 2020 Mar; 5(10):5270-5284. PubMed ID: 32201816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuning the Carrier Transfer Behavior of Coaxial ZnO/ZnS/ZnIn
    Peng J; Liu G; Jiao X; Xia H; Li J; Ma Q; Jin J; Li F
    ChemSusChem; 2022 Dec; 15(23):e202201469. PubMed ID: 36136368
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting.
    Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Core-Shell Vanadium Modified Titania@β-In2S3 Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity.
    Mumtaz A; Mohamed NM; Mazhar M; Ehsan MA; Mohamed Saheed MS
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9037-49. PubMed ID: 26852779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. n-n ZnO-Ag
    Pirhashemi M; Elhag S; Adam RE; Habibi-Yangjeh A; Liu X; Willander M; Nur O
    RSC Adv; 2019 Mar; 9(14):7992-8001. PubMed ID: 35521157
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation.
    Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rationally constructed ZnCdS-HDCs@In
    Peng M; Lin S; Lin Z; Zheng D; Song Y; Lu F; Chen Y; Gao W
    Biosens Bioelectron; 2022 Apr; 201():113957. PubMed ID: 34999520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Type-II Heterostructure of ZnO and Carbon Dots Demonstrates Enhanced Photoanodic Performance in Photoelectrochemical Water Splitting.
    Mahala C; Sharma MD; Basu M
    Inorg Chem; 2020 May; 59(10):6988-6999. PubMed ID: 32369368
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction of CuO/In
    Chang YC; Guo JY; Chen CM; Di HW; Hsu CC
    Nanoscale; 2017 Sep; 9(35):13235-13244. PubMed ID: 28853469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Efficient Photoelectrochemical Reduction of CO
    Liu LX; Fu J; Jiang LP; Zhang JR; Zhu W; Lin Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26024-26031. PubMed ID: 31245987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure.
    Wei Y; Ke L; Leong ES; Liu H; Liew LL; Teng JH; Du H; Sun XW
    Nanotechnology; 2012 Sep; 23(36):365704. PubMed ID: 22910379
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A ZnO@CuO core-shell heterojunction photoanode modified with ZnFe-LDH for efficient and stable photoelectrochemical performance.
    Han J; Xing H; Song Q; Yan H; Kang J; Guo Y; Liu Z
    Dalton Trans; 2021 Apr; 50(13):4593-4603. PubMed ID: 33710230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ formation of a ZnO/ZnSe nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance.
    Wang L; Tian G; Chen Y; Xiao Y; Fu H
    Nanoscale; 2016 Apr; 8(17):9366-75. PubMed ID: 27091395
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting.
    Zayed M; Nasser N; Shaban M; Alshaikh H; Hamdy H; Ahmed AM
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hierarchical architectures of wrinkle-like ZnFe
    Long J; Wang W; Fu S; Liu L
    J Colloid Interface Sci; 2019 Feb; 536():408-413. PubMed ID: 30380440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.
    Lei F; Zhang L; Sun Y; Liang L; Liu K; Xu J; Zhang Q; Pan B; Luo Y; Xie Y
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9266-70. PubMed ID: 26111265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.