These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 30393771)
1. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes. Pi L; Halabi S Diagn Progn Res; 2018; 2():. PubMed ID: 30393771 [TBL] [Abstract][Full Text] [Related]
2. Omics feature selection with the extended SIS R package: identification of a body mass index epigenetic multimarker in the Strong Heart Study. Domingo-Relloso A; Feng Y; Rodriguez-Hernandez Z; Haack K; Cole SA; Navas-Acien A; Tellez-Plaza M; Bermudez JD Am J Epidemiol; 2024 Jul; 193(7):1010-1018. PubMed ID: 38375692 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Prognostic Predictions in Liver Cancer with Machine Learning and Survival Analysis. Cai K; Fu W; Wang Z; Yang X; Liu H; Ji Z Entropy (Basel); 2024 Sep; 26(9):. PubMed ID: 39330100 [TBL] [Abstract][Full Text] [Related]
4. A comparative study of variable selection methods in the context of developing psychiatric screening instruments. Lu F; Petkova E Stat Med; 2014 Feb; 33(3):401-21. PubMed ID: 23934941 [TBL] [Abstract][Full Text] [Related]
5. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. Tamba CL; Ni YL; Zhang YM PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824 [TBL] [Abstract][Full Text] [Related]
6. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086 [TBL] [Abstract][Full Text] [Related]
7. Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening. Jardillier R; Koca D; Chatelain F; Guyon L BMC Cancer; 2022 Oct; 22(1):1045. PubMed ID: 36199072 [TBL] [Abstract][Full Text] [Related]
8. Variable selection for proportional odds model. Lu W; Zhang HH Stat Med; 2007 Sep; 26(20):3771-81. PubMed ID: 17266170 [TBL] [Abstract][Full Text] [Related]
9. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy. Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ Front Oncol; 2020; 10():551420. PubMed ID: 33194609 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of forest methods for time-to-event data: variable selection and predictive performance. Liu Y; Zhou S; Wei H; An S BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138 [TBL] [Abstract][Full Text] [Related]
11. Comparison of three statistical approaches for feature selection for fine-scale genetic population assignment in four pig breeds. Hayah I; Ababou M; Botti S; Badaoui B Trop Anim Health Prod; 2021 Jul; 53(3):395. PubMed ID: 34245361 [TBL] [Abstract][Full Text] [Related]
13. Improved nonparametric survival prediction using CoxPH, Random Survival Forest & DeepHit Neural Network. Asghar N; Khalil U; Ahmad B; Alshanbari HM; Hamraz M; Ahmad B; Khan DM BMC Med Inform Decis Mak; 2024 May; 24(1):120. PubMed ID: 38715002 [TBL] [Abstract][Full Text] [Related]
14. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
15. Development of a Machine Learning-Based Model for Predicting the Incidence of Peripheral Intravenous Catheter-Associated Phlebitis. Yasuda H; Rickard CM; Mimoz O; Marsh N; Schults JA; Drugeon B; Kashiura M; Kishihara Y; Shinzato Y; Koike M; Moriya T; Kotani Y; Kondo N; Sekine K; Shime N; Morikane K; Abe T J Crit Care Med (Targu Mures); 2024 Jul; 10(3):232-244. PubMed ID: 39108413 [TBL] [Abstract][Full Text] [Related]
16. PREDICTION OF TREATMENT OUTCOME FOR AUTISM FROM STRUCTURE OF THE BRAIN BASED ON SURE INDEPENDENCE SCREENING. Zhuang J; Dvornek NC; Zhao Q; Li X; Ventola P; Duncan JS Proc IEEE Int Symp Biomed Imaging; 2019 Apr; 2019():404-408. PubMed ID: 32256966 [TBL] [Abstract][Full Text] [Related]
17. Regularized Machine Learning Models for Prediction of Metabolic Syndrome Using Alipour N; Kazemnejad A; Akbarzadeh M; Eskandari F; Zahedi AS; Daneshpour MS Cell J; 2023 Aug; 25(8):536-545. PubMed ID: 37641415 [TBL] [Abstract][Full Text] [Related]
18. Feature Selection Stability and Accuracy of Prediction Models for Genomic Prediction of Residual Feed Intake in Pigs Using Machine Learning. Piles M; Bergsma R; Gianola D; Gilbert H; Tusell L Front Genet; 2021; 12():611506. PubMed ID: 33692825 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events. Ojeda FM; Müller C; Börnigen D; Trégouët DA; Schillert A; Heinig M; Zeller T; Schnabel RB Genomics Proteomics Bioinformatics; 2016 Aug; 14(4):235-43. PubMed ID: 27224515 [TBL] [Abstract][Full Text] [Related]
20. A robust variable screening procedure for ultra-high dimensional data. Ghosh A; Thoresen M Stat Methods Med Res; 2021 Aug; 30(8):1816-1832. PubMed ID: 34053339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]