BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30393771)

  • 1. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes.
    Pi L; Halabi S
    Diagn Progn Res; 2018; 2():. PubMed ID: 30393771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omics feature selection with the extended SIS R package: identification of a body mass index epigenetic multi-marker in the Strong Heart Study.
    Domingo-Relloso A; Feng Y; Rodriguez-Hernandez Z; Haack K; Cole SA; Navas-Acien A; Tellez-Plaza M; Bermudez JD
    Am J Epidemiol; 2024 Feb; ():. PubMed ID: 38375692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of variable selection methods in the context of developing psychiatric screening instruments.
    Lu F; Petkova E
    Stat Med; 2014 Feb; 33(3):401-21. PubMed ID: 23934941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies.
    Tamba CL; Ni YL; Zhang YM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models.
    Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT
    BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable selection for proportional odds model.
    Lu W; Zhang HH
    Stat Med; 2007 Sep; 26(20):3771-81. PubMed ID: 17266170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy.
    Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ
    Front Oncol; 2020; 10():551420. PubMed ID: 33194609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of three statistical approaches for feature selection for fine-scale genetic population assignment in four pig breeds.
    Hayah I; Ababou M; Botti S; Badaoui B
    Trop Anim Health Prod; 2021 Jul; 53(3):395. PubMed ID: 34245361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi-dimensional pre-screening.
    Jardillier R; Koca D; Chatelain F; Guyon L
    BMC Cancer; 2022 Oct; 22(1):1045. PubMed ID: 36199072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.
    Haem E; Harling K; Ayatollahi SM; Zare N; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2017 Feb; 44(1):55-66. PubMed ID: 28144841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved nonparametric survival prediction using CoxPH, Random Survival Forest & DeepHit Neural Network.
    Asghar N; Khalil U; Ahmad B; Alshanbari HM; Hamraz M; Ahmad B; Khan DM
    BMC Med Inform Decis Mak; 2024 May; 24(1):120. PubMed ID: 38715002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PREDICTION OF TREATMENT OUTCOME FOR AUTISM FROM STRUCTURE OF THE BRAIN BASED ON SURE INDEPENDENCE SCREENING.
    Zhuang J; Dvornek NC; Zhao Q; Li X; Ventola P; Duncan JS
    Proc IEEE Int Symp Biomed Imaging; 2019 Apr; 2019():404-408. PubMed ID: 32256966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regularized Machine Learning Models for Prediction of Metabolic Syndrome Using
    Alipour N; Kazemnejad A; Akbarzadeh M; Eskandari F; Zahedi AS; Daneshpour MS
    Cell J; 2023 Aug; 25(8):536-545. PubMed ID: 37641415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature Selection Stability and Accuracy of Prediction Models for Genomic Prediction of Residual Feed Intake in Pigs Using Machine Learning.
    Piles M; Bergsma R; Gianola D; Gilbert H; Tusell L
    Front Genet; 2021; 12():611506. PubMed ID: 33692825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events.
    Ojeda FM; Müller C; Börnigen D; Trégouët DA; Schillert A; Heinig M; Zeller T; Schnabel RB
    Genomics Proteomics Bioinformatics; 2016 Aug; 14(4):235-43. PubMed ID: 27224515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust variable screening procedure for ultra-high dimensional data.
    Ghosh A; Thoresen M
    Stat Methods Med Res; 2021 Aug; 30(8):1816-1832. PubMed ID: 34053339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing machine learning approaches to incorporate time-varying covariates in predicting cancer survival time.
    Cygu S; Seow H; Dushoff J; Bolker BM
    Sci Rep; 2023 Jan; 13(1):1370. PubMed ID: 36697455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-step hybrid strategy towards efficiently selecting variables in multivariate calibration of near-infrared spectra.
    Yu HD; Yun YH; Zhang W; Chen H; Liu D; Zhong Q; Chen W; Chen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117376. PubMed ID: 31325711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.