These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30393799)
21. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Boyd ES; Yu RQ; Barkay T; Hamilton TL; Baxter BK; Naftz DL; Marvin-DiPasquale M Sci Total Environ; 2017 Mar; 581-582():495-506. PubMed ID: 28057343 [TBL] [Abstract][Full Text] [Related]
22. Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota. Hines NA; Brezonik PL; Engstrom DR Environ Sci Technol; 2004 Dec; 38(24):6610-7. PubMed ID: 15669319 [TBL] [Abstract][Full Text] [Related]
23. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia. Correia RRS; Guimarães JRD Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167 [TBL] [Abstract][Full Text] [Related]
24. Methylmercury cycling in High Arctic wetland ponds: controls on sedimentary production. Lehnherr I; St Louis VL; Kirk JL Environ Sci Technol; 2012 Oct; 46(19):10523-31. PubMed ID: 22799567 [TBL] [Abstract][Full Text] [Related]
25. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Lei P; Zhong H; Duan D; Pan K Sci Total Environ; 2019 Aug; 680():140-150. PubMed ID: 31112813 [TBL] [Abstract][Full Text] [Related]
26. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Bravo AG; Bouchet S; Guédron S; Amouroux D; Dominik J; Zopfi J Water Res; 2015 Sep; 80():245-55. PubMed ID: 26005785 [TBL] [Abstract][Full Text] [Related]
27. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona. Kay JT; Conklin MH; Fuller CC; O'Day PA Environ Sci Technol; 2001 Dec; 35(24):4719-25. PubMed ID: 11775144 [TBL] [Abstract][Full Text] [Related]
28. Factors that influence methylmercury flux rates from wetland sediments. Holmes J; Lean D Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019 [TBL] [Abstract][Full Text] [Related]
29. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. He T; Lu J; Yang F; Feng X Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225 [TBL] [Abstract][Full Text] [Related]
30. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Klaus JE; Hammerschmidt CR; Costello DM; Burton GA Environ Toxicol Chem; 2016 Jul; 35(7):1759-65. PubMed ID: 26636557 [TBL] [Abstract][Full Text] [Related]
31. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155 [TBL] [Abstract][Full Text] [Related]
32. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. DeLaune RD; Jugsujinda A; Devai I; Patrick WH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(8):1925-33. PubMed ID: 15332659 [TBL] [Abstract][Full Text] [Related]
33. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Bailey LT; Mitchell CPJ; Engstrom DR; Berndt ME; Coleman Wasik JK; Johnson NW Sci Total Environ; 2017 Feb; 580():1197-1204. PubMed ID: 28024742 [TBL] [Abstract][Full Text] [Related]
34. Impact of geochemistry and microbes on the methylmercury production in mangrove sediments. Liu J; Li Y; Zhang A; Zhong H; Jiang H; Tsui MT; Li M; Pan K J Hazard Mater; 2024 Nov; 479():135627. PubMed ID: 39217948 [TBL] [Abstract][Full Text] [Related]
35. Development of a Novel Equilibrium Passive Sampling Device for Methylmercury in Sediment and Soil Porewaters. Sanders JP; McBurney A; Gilmour CC; Schwartz GE; Washburn S; Kane Driscoll SB; Brown SS; Ghosh U Environ Toxicol Chem; 2020 Feb; 39(2):323-334. PubMed ID: 31692059 [TBL] [Abstract][Full Text] [Related]
36. Disentangling the effects of habitat biogeochemistry, food web structure, and diet composition on mercury bioaccumulation in a wetland bird. Hall LA; Woo I; Marvin-DiPasquale M; Tsao DC; Krabbenhoft DP; Takekawa JY; De La Cruz SEW Environ Pollut; 2020 Jan; 256():113280. PubMed ID: 31718826 [TBL] [Abstract][Full Text] [Related]
37. Distribution of mercury and methylmercury in river water and sediment of typical manganese mining area. Zhang Y; Sun T; Ma M; Wang X; Xie Q; Zhang C; Wang Y; Wang D J Environ Sci (China); 2022 Sep; 119():11-22. PubMed ID: 35934456 [TBL] [Abstract][Full Text] [Related]
38. Salinity and redox conditions affect the methyl mercury formation in sediment of Suaeda heteroptera wetlands of Liaoning province, Northeast China. Li H; Zheng D; Yang J; Wu C; Zhang S; Li H; Ma H Mar Pollut Bull; 2019 May; 142():537-543. PubMed ID: 31232335 [TBL] [Abstract][Full Text] [Related]
39. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Drott A; Lambertsson L; Björn E; Skyllberg U Environ Sci Technol; 2008 Jan; 42(1):153-8. PubMed ID: 18350890 [TBL] [Abstract][Full Text] [Related]
40. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America. Hoggarth CG; Hall BD; Mitchell CP Environ Pollut; 2015 Oct; 205():269-77. PubMed ID: 26099458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]