These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 30393837)
1. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Jacquillet G; Unwin RJ Pflugers Arch; 2019 Jan; 471(1):83-98. PubMed ID: 30393837 [TBL] [Abstract][Full Text] [Related]
2. Vitamin D and type II sodium-dependent phosphate cotransporters. Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552 [TBL] [Abstract][Full Text] [Related]
3. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake. Daryadel A; Küng CJ; Haykir B; Sabrautzki S; de Angelis MH; Hernando N; Rubio-Aliaga I; Wagner CA Am J Physiol Renal Physiol; 2024 May; 326(5):F792-F801. PubMed ID: 38545651 [TBL] [Abstract][Full Text] [Related]
4. Phosphate Metabolism in Health and Disease. Peacock M Calcif Tissue Int; 2021 Jan; 108(1):3-15. PubMed ID: 32266417 [TBL] [Abstract][Full Text] [Related]
6. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE). Aniteli TM; de Siqueira FR; Dos Reis LM; Dominguez WV; de Oliveira EMC; Castelucci P; Moysés RMA; Jorgetti V Pflugers Arch; 2018 Apr; 470(4):623-632. PubMed ID: 29372301 [TBL] [Abstract][Full Text] [Related]
7. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation. Fujii T; Segawa H; Hanazaki A; Nishiguchi S; Minoshima S; Ohi A; Tominaga R; Sasaki S; Tanifuji K; Koike M; Arima Y; Shiozaki Y; Kaneko I; Ito M; Tatsumi S; Miyamoto KI Clin Exp Nephrol; 2019 Jul; 23(7):898-907. PubMed ID: 30895530 [TBL] [Abstract][Full Text] [Related]
8. Acute adaptation of renal phosphate transporters in the murine kidney to oral phosphate intake requires multiple signals. Daryadel A; Haykir B; Küng CJ; Bugarski M; Bettoni C; Schnitzbauer U; Hernando N; Hall AM; Wagner CA Acta Physiol (Oxf); 2022 Jun; 235(2):e13815. PubMed ID: 35334154 [TBL] [Abstract][Full Text] [Related]
9. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Quarles LD Exp Cell Res; 2012 May; 318(9):1040-8. PubMed ID: 22421513 [TBL] [Abstract][Full Text] [Related]
11. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430 [TBL] [Abstract][Full Text] [Related]
12. The roles of Na/Pi-II transporters in phosphate metabolism. Segawa H; Aranami F; Kaneko I; Tomoe Y; Miyamoto K Bone; 2009 Jul; 45 Suppl 1():S2-7. PubMed ID: 19232403 [TBL] [Abstract][Full Text] [Related]
13. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-α-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney. Webster R; Sheriff S; Faroqui R; Siddiqui F; Hawse JR; Amlal H Am J Physiol Renal Physiol; 2016 Aug; 311(2):F249-59. PubMed ID: 27194721 [TBL] [Abstract][Full Text] [Related]
14. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney. Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463 [TBL] [Abstract][Full Text] [Related]
15. Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo. Küng CJ; Haykir B; Schnitzbauer U; Egli-Spichtig D; Hernando N; Wagner CA Am J Physiol Renal Physiol; 2021 Dec; 321(6):F785-F798. PubMed ID: 34719948 [TBL] [Abstract][Full Text] [Related]
16. [Discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis]. Nabeshima Y Clin Calcium; 2008 Jul; 18(7):923-34. PubMed ID: 18591743 [TBL] [Abstract][Full Text] [Related]
17. Vitamin D and Phosphate Interactions in Health and Disease. Akimbekov NS; Digel I; Sherelkhan DK; Razzaque MS Adv Exp Med Biol; 2022; 1362():37-46. PubMed ID: 35288871 [TBL] [Abstract][Full Text] [Related]
18. Osteo-renal cross-talk and phosphate metabolism by the FGF23-Klotho system. Ohnishi M; Razzaque MS Contrib Nephrol; 2013; 180():1-13. PubMed ID: 23652546 [TBL] [Abstract][Full Text] [Related]
19. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Miyamoto K; Ito M; Tatsumi S; Kuwahata M; Segawa H Am J Nephrol; 2007; 27(5):503-15. PubMed ID: 17687185 [TBL] [Abstract][Full Text] [Related]