BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30393975)

  • 21. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact.
    Tarabout C; Roux S; Gobeaux F; Fay N; Pouget E; Meriadec C; Ligeti M; Thomas D; IJsselstijn M; Besselievre F; Buisson DA; Verbavatz JM; Petitjean M; Valéry C; Perrin L; Rousseau B; Artzner F; Paternostre M; Cintrat JC
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7679-84. PubMed ID: 21518895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Apr; 110(13):6999-7008. PubMed ID: 16571014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-assembly of cyclic peptide nanotubes and block copolymers in thin films: controlling the kinetic pathway.
    Zhang C; Xu T
    Nanoscale; 2015 Oct; 7(37):15117-21. PubMed ID: 26355605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
    Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S
    Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling the Assembly of Coiled-Coil Peptide Nanotubes.
    Thomas F; Burgess NC; Thomson AR; Woolfson DN
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):987-91. PubMed ID: 26663438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alpha,gamma-peptide nanotube templating of one-dimensional parallel fullerene arrangements.
    Reiriz C; Brea RJ; Arranz R; Carrascosa JL; Garibotti A; Manning B; Valpuesta JM; Eritja R; Castedo L; Granja JR
    J Am Chem Soc; 2009 Aug; 131(32):11335-7. PubMed ID: 19630409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles.
    Sun L; Fan Z; Wang Y; Huang Y; Schmidt M; Zhang M
    Soft Matter; 2015 May; 11(19):3822-32. PubMed ID: 25858105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic properties of tetrathiafulvalene-modified cyclic-β-peptide nanotube.
    Uji H; Kim H; Imai T; Mitani S; Sugiyama J; Kimura S
    Biopolymers; 2016 May; 106(3):275-82. PubMed ID: 27061720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patenting activity in synthesis of lipid nanotubes and peptide nanotubes.
    Zhou Y
    Recent Pat Nanotechnol; 2007; 1(1):21-8. PubMed ID: 19076017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic synthesis of amino acid and peptide derivatized gadonanotubes.
    Mackeyev Y; Hartman KB; Ananta JS; Lee AV; Wilson LJ
    J Am Chem Soc; 2009 Jun; 131(24):8342-3. PubMed ID: 19492838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adjustable photoluminescence of peptide nanotubes coatings.
    Amdursky N; Koren I; Gazit E; Rosenman G
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9282-6. PubMed ID: 22400337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications of cyclic peptide nanotubes (cPNTs).
    Hsieh WH; Liaw J
    J Food Drug Anal; 2019 Jan; 27(1):32-47. PubMed ID: 30648586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of chloroform from a dilute solution using a cyclic peptide nanotube: A molecular dynamics study.
    Zhao X; Fan JF; Si XL; Zhang LL; Qu MN
    J Mol Graph Model; 2018 Aug; 83():74-83. PubMed ID: 29778743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis.
    Castillo J; Tanzi S; Dimaki M; Svendsen W
    Electrophoresis; 2008 Dec; 29(24):5026-32. PubMed ID: 19130587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methyl-blocked dimeric alpha,gamma-peptide nanotube segments: formation of a peptide heterodimer through backbone-backbone interactions.
    Brea RJ; Amorín M; Castedo L; Granja JR
    Angew Chem Int Ed Engl; 2005 Sep; 44(35):5710-3. PubMed ID: 16080230
    [No Abstract]   [Full Text] [Related]  

  • 38. Protocol for photo-controlling the assembly of cyclic peptide nanotubes in solution and inside microfluidic droplets.
    Vilela-Picos M; Novelli F; Méndez-Ardoy A; Moretto A; Granja JR
    STAR Protoc; 2024 Jun; 5(2):103031. PubMed ID: 38678573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides.
    Yamashita I; Kirimura H; Okuda M; Nishio K; Sano K; Shiba K; Hayashi T; Hara M; Mishima Y
    Small; 2006 Oct; 2(10):1148-52. PubMed ID: 17193580
    [No Abstract]   [Full Text] [Related]  

  • 40. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.