BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30393977)

  • 1. CTC1 mutations in a Brazilian family with progeroid features and recurrent bone fractures.
    Sargolzaeiaval F; Zhang J; Schleit J; Lessel D; Kubisch C; Precioso DR; Sillence D; Hisama FM; Dorschner M; Martin GM; Oshima J
    Mol Genet Genomic Med; 2018 Nov; 6(6):1148-1156. PubMed ID: 30393977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts.
    Polvi A; Linnankivi T; Kivelä T; Herva R; Keating JP; Mäkitie O; Pareyson D; Vainionpää L; Lahtinen J; Hovatta I; Pihko H; Lehesjoki AE
    Am J Hum Genet; 2012 Mar; 90(3):540-9. PubMed ID: 22387016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole exome sequencing in an Indian family links Coats plus syndrome and dextrocardia with a homozygous novel CTC1 and a rare HES7 variation.
    Netravathi M; Kumari R; Kapoor S; Dakle P; Dwivedi MK; Roy SD; Pandey P; Saini J; Ramakrishna A; Navalli D; Satishchandra P; Pal PK; Kumar A; Faruq M
    BMC Med Genet; 2015 Feb; 16():5. PubMed ID: 25928698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of telomere syndrome caused by CTC1 mutations.
    Chen LY; Majerská J; Lingner J
    Genes Dev; 2013 Oct; 27(19):2099-108. PubMed ID: 24115768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus.
    Gu P; Chang S
    Aging Cell; 2013 Dec; 12(6):1100-9. PubMed ID: 23869908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenic CTC1 mutations cause global genome instabilities under replication stress.
    Wang Y; Chai W
    Nucleic Acids Res; 2018 May; 46(8):3981-3992. PubMed ID: 29481669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary Ovarian Failure in Addition to Classical Clinical Features of Coats Plus Syndrome in a Female Carrying 2 Truncating Variants of CTC1.
    Riquelme J; Takada S; van Dijk T; Peña F; Boogaard MW; van Duyvenvoorde HA; Pico-Knijnenburg I; Wit JM; van der Burg M; Mericq V; Losekoot M
    Horm Res Paediatr; 2021; 94(11-12):448-455. PubMed ID: 34706368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebro-retinal microangiopathy with calcifications and cysts due to recessive mutations in the CTC1 gene.
    Bisserbe A; Tertian G; Buffet C; Turhan A; Lambotte O; Nasser G; Alvin P; Tardieu M; Riant F; Bergametti F; Tournier-Lasserve E; Denier C
    Rev Neurol (Paris); 2015 May; 171(5):445-9. PubMed ID: 25843205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebroretinal microangiopathy with calcifications and cysts associated with CTC1 and NDP mutations.
    Romaniello R; Arrigoni F; Citterio A; Tonelli A; Sforzini C; Rizzari C; Pessina M; Triulzi F; Bassi MT; Borgatti R
    J Child Neurol; 2013 Dec; 28(12):1702-8. PubMed ID: 23220793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CTC1-STN1 coordinates G- and C-strand synthesis to regulate telomere length.
    Gu P; Jia S; Takasugi T; Smith E; Nandakumar J; Hendrickson E; Chang S
    Aging Cell; 2018 Aug; 17(4):e12783. PubMed ID: 29774655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mutation of CTC1 leads to telomere shortening in a chinese family with interstitial lung disease.
    Liu L; Luo H; Sheng Y; Kang X; Peng H; Luo H; Fan LL
    Hereditas; 2023 Nov; 160(1):37. PubMed ID: 37978541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes.
    Shastrula PK; Rice CT; Wang Z; Lieberman PM; Skordalakes E
    Nucleic Acids Res; 2018 Jan; 46(2):972-984. PubMed ID: 29228254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion.
    Gu P; Min JN; Wang Y; Huang C; Peng T; Chai W; Chang S
    EMBO J; 2012 May; 31(10):2309-21. PubMed ID: 22531781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1.
    Choudhury A; Mohammad T; Samarth N; Hussain A; Rehman MT; Islam A; Alajmi MF; Singh S; Hassan MI
    Sci Rep; 2021 May; 11(1):10202. PubMed ID: 33986331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel compound heterozygous STN1 variants are associated with Coats Plus syndrome.
    Acharya T; Firth HV; Dugar S; Grammatikopoulos T; Seabra L; Walters A; Crow YJ; Parker APJ
    Mol Genet Genomic Med; 2021 Dec; 9(12):e1708. PubMed ID: 34110109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of germline CTC1 alterations on telomere length in acquired bone marrow failure.
    Shen W; Kerr CM; Przychozen B; Mahfouz RZ; LaFramboise T; Nagata Y; Hanna R; Radivoyevitch T; Nazha A; Sekeres MA; Maciejewski JP
    Br J Haematol; 2019 Jun; 185(5):935-939. PubMed ID: 30891747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.
    Chastain M; Zhou Q; Shiva O; Fadri-Moskwik M; Whitmore L; Jia P; Dai X; Huang C; Ye P; Chai W
    Cell Rep; 2016 Aug; 16(5):1300-1314. PubMed ID: 27487043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance.
    Feng X; Hsu SJ; Kasbek C; Chaiken M; Price CM
    Nucleic Acids Res; 2017 May; 45(8):4281-4293. PubMed ID: 28334750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CST in maintaining genome stability: Beyond telomeres.
    Lyu X; Sang PB; Chai W
    DNA Repair (Amst); 2021 Jun; 102():103104. PubMed ID: 33780718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus.
    Anderson BH; Kasher PR; Mayer J; Szynkiewicz M; Jenkinson EM; Bhaskar SS; Urquhart JE; Daly SB; Dickerson JE; O'Sullivan J; Leibundgut EO; Muter J; Abdel-Salem GM; Babul-Hirji R; Baxter P; Berger A; Bonafé L; Brunstom-Hernandez JE; Buckard JA; Chitayat D; Chong WK; Cordelli DM; Ferreira P; Fluss J; Forrest EH; Franzoni E; Garone C; Hammans SR; Houge G; Hughes I; Jacquemont S; Jeannet PY; Jefferson RJ; Kumar R; Kutschke G; Lundberg S; Lourenço CM; Mehta R; Naidu S; Nischal KK; Nunes L; Ounap K; Philippart M; Prabhakar P; Risen SR; Schiffmann R; Soh C; Stephenson JB; Stewart H; Stone J; Tolmie JL; van der Knaap MS; Vieira JP; Vilain CN; Wakeling EL; Wermenbol V; Whitney A; Lovell SC; Meyer S; Livingston JH; Baerlocher GM; Black GC; Rice GI; Crow YJ
    Nat Genet; 2012 Jan; 44(3):338-42. PubMed ID: 22267198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.