These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30393999)
1. Advanced Technologies for High-Energy Aluminum-Air Batteries. Ryu J; Park M; Cho J Adv Mater; 2019 May; 31(20):e1804784. PubMed ID: 30393999 [TBL] [Abstract][Full Text] [Related]
2. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related]
3. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related]
4. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries. Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665 [TBL] [Abstract][Full Text] [Related]
5. Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc-Air Batteries. Wang M; Qian T; Liu S; Zhou J; Yan C ACS Appl Mater Interfaces; 2017 Jun; 9(25):21216-21224. PubMed ID: 28581707 [TBL] [Abstract][Full Text] [Related]
6. Electrolytes for Batteries with Earth-Abundant Metal Anodes. Zhao H; Xu J; Yin D; Du Y Chemistry; 2018 Dec; 24(69):18220-18234. PubMed ID: 30044015 [TBL] [Abstract][Full Text] [Related]
7. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530 [TBL] [Abstract][Full Text] [Related]
8. Recent progress in aqueous aluminum-ion batteries. Wang B; Tang Y; Deng T; Zhu J; Sun B; Su Y; Ti R; Yang J; Wu W; Cheng N; Zhang C; Lu X; Xu Y; Liang J Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38848693 [TBL] [Abstract][Full Text] [Related]
9. Mn Huang Z; Qin X; Gu X; Li G; Mu Y; Wang N; Ithisuphalap K; Wang H; Guo Z; Shi Z; Wu G; Shao M ACS Appl Mater Interfaces; 2018 Jul; 10(28):23900-23909. PubMed ID: 29947509 [TBL] [Abstract][Full Text] [Related]
10. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries. Jiang M; Fu C; Meng P; Ren J; Wang J; Bu J; Dong A; Zhang J; Xiao W; Sun B Adv Mater; 2022 Jan; 34(2):e2102026. PubMed ID: 34668245 [TBL] [Abstract][Full Text] [Related]
11. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Yang C; Fu K; Zhang Y; Hitz E; Hu L Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318 [TBL] [Abstract][Full Text] [Related]
12. MnO/N-Doped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc-Air Batteries. Ding J; Ji S; Wang H; Brett DJL; Pollet BG; Wang R Chemistry; 2019 Feb; 25(11):2868-2876. PubMed ID: 30548500 [TBL] [Abstract][Full Text] [Related]
13. Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum-Air Batteries. Cheng R; Wang F; Jiang M; Li K; Zhao T; Meng P; Yang J; Fu C ACS Appl Mater Interfaces; 2021 Aug; 13(31):37123-37132. PubMed ID: 34333971 [TBL] [Abstract][Full Text] [Related]
14. Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Wan H; Chen F; Ma W; Liu X; Ma R Nanoscale; 2020 Nov; 12(42):21479-21496. PubMed ID: 33089855 [TBL] [Abstract][Full Text] [Related]
15. Material design and surface chemistry for advanced rechargeable zinc-air batteries. Lee S; Choi J; Kim M; Park J; Park M; Cho J Chem Sci; 2022 Jun; 13(21):6159-6180. PubMed ID: 35733905 [TBL] [Abstract][Full Text] [Related]
16. Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects. Yu H; Lv C; Yan C; Yu G Small Methods; 2024 Jun; 8(6):e2300758. PubMed ID: 37584206 [TBL] [Abstract][Full Text] [Related]
17. Edge Defect Engineering of Nitrogen-Doped Carbon for Oxygen Electrocatalysts in Zn-Air Batteries. Wang Q; Lei Y; Zhu Y; Wang H; Feng J; Ma G; Wang Y; Li Y; Nan B; Feng Q; Lu Z; Yu H ACS Appl Mater Interfaces; 2018 Sep; 10(35):29448-29456. PubMed ID: 30088907 [TBL] [Abstract][Full Text] [Related]
18. Challenges and Strategies of Aluminum Anodes for High-Performance Aluminum-Air Batteries. Zhang Y; Lv C; Zhu Y; Kuang J; Wang H; Li Y; Tang Y Small Methods; 2024 May; 8(5):e2300911. PubMed ID: 38150657 [TBL] [Abstract][Full Text] [Related]
19. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes. Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521 [TBL] [Abstract][Full Text] [Related]
20. Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction. Borghei M; Lehtonen J; Liu L; Rojas OJ Adv Mater; 2018 Jun; 30(24):e1703691. PubMed ID: 29205520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]