These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30393999)

  • 21. Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal-Air Batteries.
    Huang Y; Wang Y; Tang C; Wang J; Zhang Q; Wang Y; Zhang J
    Adv Mater; 2019 Mar; 31(13):e1803800. PubMed ID: 30247779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MnO
    Shui Z; Liao X; Lei Y; Ni J; Liu Y; Dan Y; Zhao W; Chen X
    Langmuir; 2020 Nov; 36(43):12954-12962. PubMed ID: 33100011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries.
    Nayem SMA; Islam S; Mohamed M; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300005. PubMed ID: 36807755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries.
    Wang HF; Tang C; Wang B; Li BQ; Zhang Q
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28714208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cobalt-Based Metal-Organic Framework Nanoarrays as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries.
    Chen G; Zhang J; Wang F; Wang L; Liao Z; Zschech E; Müllen K; Feng X
    Chemistry; 2018 Dec; 24(69):18413-18418. PubMed ID: 30192997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries.
    Sun B; Xiong P; Maitra U; Langsdorf D; Yan K; Wang C; Janek J; Schröder D; Wang G
    Adv Mater; 2020 May; 32(18):e1903891. PubMed ID: 31599999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-Solid-State Aluminum-Air Batteries with Ultra-high Energy Density and Uniform Aluminum Stripping Behavior.
    Lv C; Li Y; Zhu Y; Zhang Y; Kuang J; Zhao Q; Tang Y; Wang H
    Adv Sci (Weinh); 2023 Oct; 10(29):e2304214. PubMed ID: 37587016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
    Cheng F; Chen J
    Chem Soc Rev; 2012 Mar; 41(6):2172-92. PubMed ID: 22254234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Metal-Gas Batteries with Carbon-Based Nonprecious Metal Catalysts.
    Liu H; Shi S; Wang Z; Han Y; Huang W
    Small; 2022 Mar; 18(10):e2103747. PubMed ID: 34859956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries.
    Islam S; Nayem SMA; Anjum A; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300017. PubMed ID: 37010435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paper-based microfluidic aluminum-air batteries: toward next-generation miniaturized power supply.
    Shen LL; Zhang GR; Biesalski M; Etzold BJM
    Lab Chip; 2019 Oct; 19(20):3438-3447. PubMed ID: 31556903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions.
    Yan D; Li Y; Huo J; Chen R; Dai L; Wang S
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28508469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media.
    Sun J; Lowe SE; Zhang L; Wang Y; Pang K; Wang Y; Zhong Y; Liu P; Zhao K; Tang Z; Zhao H
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16511-16515. PubMed ID: 30378233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc-Air Batteries.
    Wang L; Wang Y; Wu M; Wei Z; Cui C; Mao M; Zhang J; Han X; Liu Q; Ma J
    Small; 2018 May; 14(20):e1800737. PubMed ID: 29665265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafine Mn
    Li CS; Sun Y; Lai WH; Wang JZ; Chou SL
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27710-27719. PubMed ID: 27643427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries.
    Zhong B; Zhang L; Yu J; Fan K
    J Colloid Interface Sci; 2019 Jun; 546():113-121. PubMed ID: 30904687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries.
    Guo Y; Li H; Zhai T
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon-based electrocatalysts for advanced energy conversion and storage.
    Zhang J; Xia Z; Dai L
    Sci Adv; 2015 Aug; 1(7):e1500564. PubMed ID: 26601241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.