These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30394343)
1. Observation of an anisotropic texture inside the wax layer of insect cuticle. Mitov M; Soldan V; Balor S Arthropod Struct Dev; 2018 Nov; 47(6):622-626. PubMed ID: 30394343 [TBL] [Abstract][Full Text] [Related]
2. Multiwavelength micromirrors in the cuticle of scarab beetle Chrysina gloriosa. Agez G; Bayon C; Mitov M Acta Biomater; 2017 Jan; 48():357-367. PubMed ID: 27856284 [TBL] [Abstract][Full Text] [Related]
3. Angular distribution of luminescence dissymmetry observed from a random laser built upon the exocuticle of the scarab beetle Chrysina gloriosa. Lee S; Kim H; Jeong Y Opt Express; 2021 Nov; 29(23):37712-37721. PubMed ID: 34808838 [TBL] [Abstract][Full Text] [Related]
4. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Chandran R; Williams L; Hung A; Nowlin K; LaJeunesse D Micron; 2016 Mar; 82():74-85. PubMed ID: 26774746 [TBL] [Abstract][Full Text] [Related]
5. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
6. Graded pitch profile for the helicoidal broadband reflector and left-handed circularly polarizing cuticle of the scarab beetle Chrysina chrysargyrea. Mendoza-Galván A; Del Río LF; Järrendahl K; Arwin H Sci Rep; 2018 Apr; 8(1):6456. PubMed ID: 29691430 [TBL] [Abstract][Full Text] [Related]
7. Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development. Shumborski SJ; Samuels AL; Bird DA Planta; 2016 Oct; 244(4):843-51. PubMed ID: 27236445 [TBL] [Abstract][Full Text] [Related]
8. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy. Kim KW Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304 [TBL] [Abstract][Full Text] [Related]
9. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus. Fernández Del Río L; Arwin H; Järrendahl K Phys Rev E; 2016 Jul; 94(1-1):012409. PubMed ID: 27575166 [TBL] [Abstract][Full Text] [Related]
10. Confocal laser scanning microscopy elucidation of the micromorphology of the leaf cuticle and analysis of its chemical composition. Nadiminti PP; Rookes JE; Boyd BJ; Cahill DM Protoplasma; 2015 Nov; 252(6):1475-86. PubMed ID: 25712592 [TBL] [Abstract][Full Text] [Related]
11. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. Gorb E; Haas K; Henrich A; Enders S; Barbakadze N; Gorb S J Exp Biol; 2005 Dec; 208(Pt 24):4651-62. PubMed ID: 16326946 [TBL] [Abstract][Full Text] [Related]
12. Cuticular wax composition contributes to different strategies of foliar water uptake in six plant species from foggy rupestrian grassland in tropical mountains. Boanares D; Bueno A; de Souza AX; Kozovits AR; Sousa HC; Pimenta LPS; Isaias RMDS; França MGC Phytochemistry; 2021 Oct; 190():112894. PubMed ID: 34364088 [TBL] [Abstract][Full Text] [Related]
13. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals. Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211 [TBL] [Abstract][Full Text] [Related]
14. NEXAFS imaging to characterize the physio-chemical composition of cuticle from African Flower Scarab Eudicella gralli. Baio JE; Jaye C; Sullivan E; Rasmussen MH; Fischer DA; Gorb S; Weidner T Nat Commun; 2019 Oct; 10(1):4758. PubMed ID: 31628305 [TBL] [Abstract][Full Text] [Related]
15. Low vapor pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves. Lihavainen J; Ahonen V; Keski-Saari S; Sõber A; Oksanen E; Keinänen M Tree Physiol; 2017 Sep; 37(9):1166-1181. PubMed ID: 28460081 [TBL] [Abstract][Full Text] [Related]
16. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components. Jetter R; Riederer M Plant Physiol; 2016 Feb; 170(2):921-34. PubMed ID: 26644508 [TBL] [Abstract][Full Text] [Related]
17. Effects of cuticle structure and crystalline wax coverage on the coloration in young and old males of Calopteryx splendens and Calopteryx virgo. Kuitunen K; Gorb SN Zoology (Jena); 2011 Jun; 114(3):129-39. PubMed ID: 21683565 [TBL] [Abstract][Full Text] [Related]
18. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). Koch K; Neinhuis C; Ensikat HJ; Barthlott W J Exp Bot; 2004 Mar; 55(397):711-8. PubMed ID: 14966216 [TBL] [Abstract][Full Text] [Related]
19. Diversity of cuticular wax among Salix species and Populus species hybrids. Cameron KD; Teece MA; Bevilacqua E; Smart LB Phytochemistry; 2002 Aug; 60(7):715-25. PubMed ID: 12127589 [TBL] [Abstract][Full Text] [Related]
20. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Wen M; Buschhaus C; Jetter R Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]