These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30394368)

  • 1. Micromanipulation of Chromosomes in Insect Spermatocytes.
    Lin NKH; Nance R; Szybist J; Cheville A; Paliulis LV
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reduction of chromosome number in meiosis is determined by properties built into the chromosomes.
    Paliulis LV; Nicklas RB
    J Cell Biol; 2000 Sep; 150(6):1223-32. PubMed ID: 10995430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromanipulation of chromosomes and spindles in insect spermatocytes.
    Zhang D; Nicklas RB
    Methods Cell Biol; 1999; 61():209-18. PubMed ID: 9891316
    [No Abstract]   [Full Text] [Related]  

  • 4. Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation.
    Nicklas RB; Kubai DF
    Chromosoma; 1985; 92(4):313-24. PubMed ID: 4042772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes.
    Nicklas RB; Koch CA
    J Cell Biol; 1969 Oct; 43(1):40-50. PubMed ID: 5824068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers.
    Begg DA; Ellis GW
    J Cell Biol; 1979 Aug; 82(2):528-41. PubMed ID: 479315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spindle microtubules and their mechanical associations after micromanipulation in anaphase.
    Nicklas RB; Kubai DF; Hays TS
    J Cell Biol; 1982 Oct; 95(1):91-104. PubMed ID: 6890559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromanipulated bivalents can trigger mini-spindle formation in Drosophila melanogaster spermatocyte cytoplasm.
    Church K; Nicklas RB; Lin HP
    J Cell Biol; 1986 Dec; 103(6 Pt 2):2765-73. PubMed ID: 3098743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitotic forces control a cell-cycle checkpoint.
    Li X; Nicklas RB
    Nature; 1995 Feb; 373(6515):630-2. PubMed ID: 7854422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules continuously dictate distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes.
    Alsop GB; Zhang D
    J Cell Sci; 2004 Mar; 117(Pt 8):1591-602. PubMed ID: 15020685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the force produced by the mitotic spindle in anaphase.
    Nicklas RB
    J Cell Biol; 1983 Aug; 97(2):542-8. PubMed ID: 6885908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes.
    Li X; Nicklas RB
    J Cell Sci; 1997 Mar; 110 ( Pt 5)():537-45. PubMed ID: 9092936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic tethers between separating anaphase chromosomes in crane-fly spermatocytes coordinate chromosome movements to the two poles.
    Sheykhani R; Berns M; Forer A
    Cytoskeleton (Hoboken); 2017 Feb; 74(2):91-103. PubMed ID: 27935262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of D2O on the movement of chromosomes and the shortening of kinetochore spindle fibers in anaphase in dividing spermatocytes of the grasshopper, Mongolotettix japonicus.
    Sumitro SB; Izutsu K; Sato H
    Cell Struct Funct; 1989 Jun; 14(3):345-52. PubMed ID: 2776227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prophase chromosome movements in living house cricket spermatocytes and their relationship to prometaphase, anaphase and granule movements.
    Rickards GK
    Chromosoma; 1975; 49(4):407-55. PubMed ID: 1132283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration.
    Houchmandzadeh B; Marko JF; Chatenay D; Libchaber A
    J Cell Biol; 1997 Oct; 139(1):1-12. PubMed ID: 9314524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle.
    Begg DA; Ellis GW
    J Cell Biol; 1979 Aug; 82(2):542-54. PubMed ID: 479316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHROMOSOME VELOCITY DURING MITOSIS AS A FUNCTION OF CHROMOSOME SIZE AND POSITION.
    NICKLAS RB
    J Cell Biol; 1965 Apr; 25(1):SUPPL:119-35. PubMed ID: 14342826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint.
    Nicklas RB; Ward SC; Gorbsky GJ
    J Cell Biol; 1995 Aug; 130(4):929-39. PubMed ID: 7642708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.