BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30394387)

  • 1. Real-time Imaging and Quantification of Fungal Biofilm Development Using a Two-Phase Recirculating Flow System.
    McCall AD; Edgerton M
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of Biofilm Formation in Candida albicans Using an Automated Microfluidic Device.
    Gulati M; Ennis CL; Rodriguez DL; Nobile CJ
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286435
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    McCall AD; Pathirana RU; Prabhakar A; Cullen PJ; Edgerton M
    NPJ Biofilms Microbiomes; 2019; 5(1):21. PubMed ID: 31452924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
    Kasetty S; Mould DL; Hogan DA; Nadell CD
    mSphere; 2021 Jun; 6(3):e0041621. PubMed ID: 34160236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance.
    Uppuluri P; Chaturvedi AK; Lopez-Ribot JL
    Mycopathologia; 2009 Sep; 168(3):101-9. PubMed ID: 19370400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion as an important step in the Candida albicans biofilm developmental cycle.
    Uppuluri P; Chaturvedi AK; Srinivasan A; Banerjee M; Ramasubramaniam AK; Köhler JR; Kadosh D; Lopez-Ribot JL
    PLoS Pathog; 2010 Mar; 6(3):e1000828. PubMed ID: 20360962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of
    Romo JA; Pierce CG; Chaturvedi AK; Lazzell AL; McHardy SF; Saville SP; Lopez-Ribot JL
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208749
    [No Abstract]   [Full Text] [Related]  

  • 8. Candida albicans Biofilms and Human Disease.
    Nobile CJ; Johnson AD
    Annu Rev Microbiol; 2015; 69():71-92. PubMed ID: 26488273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Approach to Flow Cell Imaging of Candida albicans Biofilm Development.
    McCall A; Edgerton M
    J Fungi (Basel); 2017 Mar; 3(1):. PubMed ID: 29371532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.
    Nett JE; R Andes D
    Microbiol Spectr; 2015 Jun; 3(3):E30. PubMed ID: 26397003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies.
    McCall AD; Kumar R; Edgerton M
    PLoS Pathog; 2018 Sep; 14(9):e1007316. PubMed ID: 30252918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).
    Shao J; Lu K; Tian G; Cui Y; Yan Y; Wang T; Zhang X; Wang C
    J Microbiol Methods; 2015 Feb; 109():41-8. PubMed ID: 25528294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida albicans biofilm growth and dispersal: contributions to pathogenesis.
    Wall G; Montelongo-Jauregui D; Vidal Bonifacio B; Lopez-Ribot JL; Uppuluri P
    Curr Opin Microbiol; 2019 Dec; 52():1-6. PubMed ID: 31085405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole slide imaging is a high-throughput method to assess Candida biofilm formation.
    Raas MWD; Silva TP; Freitas JCO; Campos LM; Fabri RL; Melo RCN
    Microbiol Res; 2021 Sep; 250():126806. PubMed ID: 34157481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Identification of Biofilm-Specific Proteolysis in Candida albicans.
    Winter MB; Salcedo EC; Lohse MB; Hartooni N; Gulati M; Sanchez H; Takagi J; Hube B; Andes DR; Johnson AD; Craik CS; Nobile CJ
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards non-invasive monitoring of pathogen-host interactions during Candida albicans biofilm formation using in vivo bioluminescence.
    Vande Velde G; Kucharíková S; Schrevens S; Himmelreich U; Van Dijck P
    Cell Microbiol; 2014 Jan; 16(1):115-30. PubMed ID: 23962311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms.
    Seneviratne CJ; Silva WJ; Jin LJ; Samaranayake YH; Samaranayake LP
    Arch Oral Biol; 2009 Nov; 54(11):1052-60. PubMed ID: 19712926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a high-throughput Candida albicans biofilm chip.
    Srinivasan A; Uppuluri P; Lopez-Ribot J; Ramasubramanian AK
    PLoS One; 2011 Apr; 6(4):e19036. PubMed ID: 21544190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth competition between Candida dubliniensis and Candida albicans under broth and biofilm growing conditions.
    Kirkpatrick WR; Lopez-Ribot JL; McAtee RK; Patterson TF
    J Clin Microbiol; 2000 Feb; 38(2):902-4. PubMed ID: 10655413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans biofilm development under increased temperature.
    Pumeesat P; Muangkaew W; Ampawong S; Luplertlop N
    New Microbiol; 2017 Oct; 40(4):279-283. PubMed ID: 28825445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.