These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 3039453)
1. Structural and functional response of the isolated toad skin to mucosal lithium. Sanioto SM; Sesso A Pflugers Arch; 1987 Jun; 409(1-2):188-93. PubMed ID: 3039453 [TBL] [Abstract][Full Text] [Related]
2. Control of sodium permeability of the outer barrier in toad skin. Bevevino LH; Lacaz-Vieira F J Membr Biol; 1982; 66(2):97-107. PubMed ID: 6804631 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of inhibition by lithium of sodium transport in the toad bladder. Herrera FC; Beauwens R; Crabbe J Biol Cell; 1985; 55(3):257-63. PubMed ID: 2423168 [TBL] [Abstract][Full Text] [Related]
7. Cellular lithium and transepithelial transport across toad urinary bladder. Hughes PM; Macknight AD J Membr Biol; 1982; 70(1):69-88. PubMed ID: 6821210 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a transcellular component to the transepithelial sodium efflux in toad skin. Beauwens R; Noé G; Crabbé J J Membr Biol; 1978; 40 Spec No():29-43. PubMed ID: 104040 [TBL] [Abstract][Full Text] [Related]
9. Calcium exchange in isolated cutaneous epithelium of toad Bufo marinus. Grubb BR; Bentley PJ Am J Physiol; 1985 Aug; 249(2 Pt 2):R172-8. PubMed ID: 3927750 [TBL] [Abstract][Full Text] [Related]
10. Transient current changes and Na compartimentalization in frog skin epithelium. Morel F; Leblanc G Pflugers Arch; 1975 Jul; 358(2):135-57. PubMed ID: 1081678 [TBL] [Abstract][Full Text] [Related]
11. The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle. Beaugé L J Physiol; 1975 Mar; 246(2):397-420. PubMed ID: 1079873 [TBL] [Abstract][Full Text] [Related]
12. Cation selectivity of the apical membrane of the turtle colon: sodium entry in the presence of lithium. Thompson SM; Dawson DC J Gen Physiol; 1978 Sep; 72(3):269-82. PubMed ID: 702109 [TBL] [Abstract][Full Text] [Related]
13. Rheogenic sodium transport in a tight epithelium, the amphibian skin. Nagel W J Physiol; 1980 May; 302():281-95. PubMed ID: 6774086 [TBL] [Abstract][Full Text] [Related]
14. Vanadate and ouabain: a comparative study in toad skin. Aboulafia J; Lacaz-Vieira F Pflugers Arch; 1984 Jun; 401(2):204-8. PubMed ID: 6433322 [TBL] [Abstract][Full Text] [Related]
15. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase. Cox TC; Helman SI J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920 [TBL] [Abstract][Full Text] [Related]
16. Sodium arsenite affects Na+ transport in the isolated skin of the toad Pleurodema thaul. Suwalsky M; Rivera C; Norris B; Cárdenas H Comp Biochem Physiol C Toxicol Pharmacol; 2007; 146(1-2):138-146. PubMed ID: 17055342 [TBL] [Abstract][Full Text] [Related]
17. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin. Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018 [TBL] [Abstract][Full Text] [Related]
18. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane. Nielsen R Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546 [TBL] [Abstract][Full Text] [Related]
19. Effect of sodium and sodium-substitutes on the active ion transport and on the membrane potential of smooth muscle cells. Casteels R; Droogmans G; Hendrickx H J Physiol; 1973 Feb; 228(3):733-48. PubMed ID: 4702154 [TBL] [Abstract][Full Text] [Related]
20. Effects of standard diuretics and ortho-vanadate on sodium transport across isolated frog skin. Eriksson O Acta Physiol Scand; 1984 Nov; 122(3):249-60. PubMed ID: 6097097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]