These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 30394724)
1. Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments. Schaefer CE; Ho P; Berns E; Werth C Environ Sci Technol; 2018 Dec; 52(23):13747-13755. PubMed ID: 30394724 [TBL] [Abstract][Full Text] [Related]
2. Abiotic dechlorination in the presence of ferrous minerals. Schaefer CE; Ho P; Berns E; Werth C J Contam Hydrol; 2021 Aug; 241():103839. PubMed ID: 34052750 [TBL] [Abstract][Full Text] [Related]
3. Abiotic dechlorination of chlorinated ethenes in natural clayey soils: Impacts of mineralogy and temperature. Schaefer CE; Ho P; Gurr C; Berns E; Werth C J Contam Hydrol; 2017 Nov; 206():10-17. PubMed ID: 28965709 [TBL] [Abstract][Full Text] [Related]
4. Contributions of biotic and abiotic pathways to anaerobic trichloroethene transformation in low permeability source zones. Berns EC; Sanford RA; Valocchi AJ; Strathmann TJ; Schaefer CE; Werth CJ J Contam Hydrol; 2019 Jul; 224():103480. PubMed ID: 31006532 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Paul L; Smolders E Chemosphere; 2014 Sep; 111():471-7. PubMed ID: 24997954 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1. Paul L; Herrmann S; Koch CB; Philips J; Smolders E Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101 [TBL] [Abstract][Full Text] [Related]
7. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Dong Y; Liang X; Krumholz LR; Philp RP; Butler EC Environ Sci Technol; 2009 Feb; 43(3):690-7. PubMed ID: 19245003 [TBL] [Abstract][Full Text] [Related]
9. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust. Lee W; Batchelor B Environ Sci Technol; 2002 Dec; 36(24):5348-54. PubMed ID: 12521160 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of Hydroxyl Radical Production from Oxygenation of Reduced Iron Minerals and Their Reactivity with Trichloroethene: Effects of Iron Amounts, Iron Species, and Sulfate Reducing Bacteria. You X; Liu S; Berns-Herrboldt EC; Dai C; Werth CJ Environ Sci Technol; 2023 Mar; 57(12):4892-4904. PubMed ID: 36921080 [TBL] [Abstract][Full Text] [Related]
11. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Liu Y; Majetich SA; Tilton RD; Sholl DS; Lowry GV Environ Sci Technol; 2005 Mar; 39(5):1338-45. PubMed ID: 15787375 [TBL] [Abstract][Full Text] [Related]
12. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE. Schaefer CE; Towne RM; Lippincott DR; Lacombe PJ; Bishop ME; Dong H Chemosphere; 2015 Jan; 119():744-749. PubMed ID: 25192648 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effect of nickel ions on the coupled dechlorination of trichloroethylene and 2,4-dichlorophenol by Fe/TiO₂ nanocomposites in the presence of UV light under anoxic conditions. Parshetti GK; Doong RA Water Res; 2011 Aug; 45(14):4198-210. PubMed ID: 21683974 [TBL] [Abstract][Full Text] [Related]
14. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite. Hyun SP; Hayes KF Environ Sci Pollut Res Int; 2015 Nov; 22(21):16463-74. PubMed ID: 26278897 [TBL] [Abstract][Full Text] [Related]
15. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. Liu CC; Tseng DH; Wang CY J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392 [TBL] [Abstract][Full Text] [Related]
16. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G Water Res; 2018 May; 135():1-10. PubMed ID: 29438739 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron. Shih YJ; Hsia KF; Chen CW; Chen CF; Dong CD Chemosphere; 2019 Feb; 216():40-47. PubMed ID: 30359915 [TBL] [Abstract][Full Text] [Related]
18. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334 [TBL] [Abstract][Full Text] [Related]
19. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination. Gu Y; Wang B; He F; Bradley MJ; Tratnyek PG Environ Sci Technol; 2017 Nov; 51(21):12653-12662. PubMed ID: 28984446 [TBL] [Abstract][Full Text] [Related]
20. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Phenrat T; Kumloet I Water Res; 2016 Dec; 107():19-28. PubMed ID: 27788401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]