These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30394759)

  • 21. XNet: A Bayesian Approach to Extracted Ion Chromatogram Clustering for Precursor Mass Spectrometry Data.
    Gutierrez M; Handy K; Smith R
    J Proteome Res; 2019 Jul; 18(7):2771-2778. PubMed ID: 31179699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What computational non-targeted mass spectrometry-based metabolomics can gain from shotgun proteomics.
    Hamzeiy H; Cox J
    Curr Opin Biotechnol; 2017 Feb; 43():141-146. PubMed ID: 28039739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dinosaur: A Refined Open-Source Peptide MS Feature Detector.
    Teleman J; Chawade A; Sandin M; Levander F; Malmström J
    J Proteome Res; 2016 Jul; 15(7):2143-51. PubMed ID: 27224449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.
    Tyanova S; Temu T; Cox J
    Nat Protoc; 2016 Dec; 11(12):2301-2319. PubMed ID: 27809316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scientific workflow optimization for improved peptide and protein identification.
    Holl S; Mohammed Y; Zimmermann O; Palmblad M
    BMC Bioinformatics; 2015 Sep; 16(1):284. PubMed ID: 26335531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal.
    Smith R; Taylor RM; Prince JT
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S2. PubMed ID: 25952148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative and In-Depth Survey of the Isotopic Abundance Distribution Errors in Shotgun Proteomics.
    Chang C; Zhang J; Xu C; Zhao Y; Ma J; Chen T; He F; Xie H; Zhu Y
    Anal Chem; 2016 Jul; 88(13):6844-51. PubMed ID: 27266261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IQMMA: Efficient MS1 Intensity Extraction Pipeline Using Multiple Feature Detection Algorithms for DDA Proteomics.
    Postoenko VI; Garibova LA; Levitsky LI; Bubis JA; Gorshkov MV; Ivanov MV
    J Proteome Res; 2023 Sep; 22(9):2827-2835. PubMed ID: 37579078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the utility of isotopic fine structure mass spectrometry in protein identification.
    Miladinović SM; Kozhinov AN; Gorshkov MV; Tsybin YO
    Anal Chem; 2012 May; 84(9):4042-51. PubMed ID: 22468966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.
    Liu K; Zhang J; Fu B; Xie H; Wang Y; Qian X
    Proteomics; 2014 Jul; 14(13-14):1593-603. PubMed ID: 24827140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dynamic wavelet-based algorithm for pre-processing tandem mass spectrometry data.
    Wang P; Yang P; Arthur J; Yang JY
    Bioinformatics; 2010 Sep; 26(18):2242-9. PubMed ID: 20628072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graph-based peak alignment algorithms for multiple liquid chromatography-mass spectrometry datasets.
    Wang J; Lam H
    Bioinformatics; 2013 Oct; 29(19):2469-76. PubMed ID: 23904508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Standardized and Reproducible Proteomics Protocol for Bottom-Up Quantitative Analysis of Protein Samples Using SP3 and Mass Spectrometry.
    Hughes CS; Sorensen PH; Morin GB
    Methods Mol Biol; 2019; 1959():65-87. PubMed ID: 30852816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.
    Distler U; Kuharev J; Navarro P; Tenzer S
    Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods and algorithms for relative quantitative proteomics by mass spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2010; 593():187-204. PubMed ID: 19957151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathway-Informed Discovery and Targeted Proteomic Workflows Using Mass Spectrometry.
    Chu CS; Miller CA; Gieschen A; Fischer SM
    Methods Mol Biol; 2017; 1550():199-221. PubMed ID: 28188532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein Inference Using PIA Workflows and PSI Standard File Formats.
    Uszkoreit J; Perez-Riverol Y; Eggers B; Marcus K; Eisenacher M
    J Proteome Res; 2019 Feb; 18(2):741-747. PubMed ID: 30474983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-linked peptide identification: A computational forest of algorithms.
    Yılmaz Ş; Shiferaw GA; Rayo J; Economou A; Martens L; Vandermarliere E
    Mass Spectrom Rev; 2018 Nov; 37(6):738-749. PubMed ID: 29529716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics.
    Haynes SE; Polasky DA; Dixit SM; Majmudar JD; Neeson K; Ruotolo BT; Martin BR
    Anal Chem; 2017 Jun; 89(11):5669-5672. PubMed ID: 28471653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.